DECOMPRESSION SICKNESS RISK REDUCED BY H₂ METABOLISM
OF NATIVE INTESTINAL FLORA IN PIGS DURING H₂ DIVES

S.R. Kayar and A. Fahlman, Naval Medical Research Center, Bethesda, MD 20889-5607

No correlation between DCS risk and depth. High coincidence between animals with DCS and those that released no methane during the final hour of the compression.

Materials and Methods

Animals:
- Yorkshire pigs (*Sus scrofa*), castrated or uncastrated males, n = 17, body mass range 17.25 kg

Dive Simulation:
- H₂ dive simulated in a dry hyperbaric chamber (5660 L volume).
 - Chamber initially pressurized with He to 11 bar (to dilute O₂).
 - Chamber pressurized with H₂ to either 22.2, 24 or 25.5 bar for 3 h.
 - Final chamber [H₂] = 84 - 93% at each pressure; PO₂ = 0.3 - 0.5 bar.
 - Decompression rate 0.46 bar/min to 11 bar.
- Euthanized in chamber on confirmation of DCS or at end of hour.

Measurements:
- Chamber gases analyzed by gas chromatography for H₂, O₂, He, N₂ and CH₄.
- Chamber CH₄ release rate by pigs (µmol CH₄/min).
- Chamber CH₄ output concentration (ppm) was used as index of CH₄ release rate by pigs (µmol CH₄/min).
- DCS diagnosed as pigs walked on treadmill in chamber; symptoms of severe DCS include difficulty walking, falling, inability to stand, seizures.

Data Summary

Body Mass (kg)
- 19.4 ± 0.4
- 18.8 ± 0.1
- 20.2 ± 1.9
- 20.0 ± 1.0
- 19.0 ± 0.1
- 20.7 ± 1.4

% Risk of DCS
- 35
- 25
- 30
- 0

Sample Dive

This pig released increasing amounts of methane throughout the exposure to hyperbaric H₂.

Sample Dive

This pig failed to make detectable quantities (> 0.5 ppm) of methane at any time during this exposure to hyperbaric H₂.

How much H₂ was eliminated from the pigs via their release of methane?

Chamber gas volume is large (5660 L; 130 m), and sampling lines are relatively long (115 or 4011 m). Thus, >3 h are needed for the chamber to be completely flushed once with the sampling gas stream, and such a dynamic equilibrium between the input of methane from the pig and the output of methane from the chamber is measured. Chamber methane concentrations must therefore be corrected for the non-equilibrium conditions to which represent methane release into the chamber.

Results

- DCS incidence did not increase with increasing dive pressure, as expected from general experience in diving.
- Pigs that released methane had a lower incidence of DCS (89%/121) than those that released no quantifiable amounts of methane (60%/3/5).

Conclusions

- H₂-metabolizing microbes in the native intestinal flora of pigs can significantly reduce the tissue inert gas load during a simulated H₂ dive.
- We estimate that the microbes are removing H₂ at a rate that represents 4 - 8% of the rate at which H₂ is diffusing into the pigs.