Sabiiti W et al.  Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis (2014).  J Clin Invest 124(5): 2000-8

Head MG et al.  Systematic analysis of funding awarded for mycology research to institutions in the UK, 1997-2010 (2014).  BMJ Open 4(1): e004129

Voelz K et al.  Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii

(2013).  PLOS Genetics 9(9): e1003771

Hagen F et al.  Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest (2013).  PLOS ONE 8(8): e71148

Lim J et al.  Regulator of G-protein Signalling 14 (RGS14) regulates the activity of alphaM beta2 integrin during phagocytosis (2013).  PLOS ONE 8(6): e69163

Smith LM and May RC.  Mechanisms of microbial escape from phagocyte killing (2013).  Biochem Soc Trans 41(2): 475-90

Browning DF et al.  Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis (2013).  Molecular Microbiology 87(5): 939-50

Johnston SA & May RC.  Cryptococcus interactions with macrophages: evasion and manipulation of the phagosome by a fungal pathogen (2013).  Cellular Microbiology 15(3):403-11

Sabiiti W & May RC.  Mechanisms of infection by the fungal pathogen Cryptococcus neoformans (2012).  Future Microbiology 7(11):1297-1313

Sabiiti W & May RC.  Capsule independent uptake of the fungal pathogen Cryptococcus neoformans into brain microvascular endothelial cells (2012).  PLoS ONE 7(4): e35455

Cumley NL, Smith LM, Anthony M & May RC.  The CovS/CovR acid response regulator is required for intracellular survival of Group B Streptococcus in macrophages (2012).  Infection and Immunity 80(5):1650

Marsh EK & May RC.  Caenorhabditis elegans: a model organism for investigating immunity (2012).  Applied and Environmental Microbiology 78(7):2075.

Tobin DM, May RC, Wheeler RT.  Zebrafish: a see-through host and a fluorescent toolbox to probe host:pathogen interactions (2012).  PLoS Pathogens 8(1): e1002349

Sabiiti W, May RC, Pursall ER.  Experimental models of cryptococcosis (2011).  International Journal of Microbiology 2012: 626745

Boehnisch C, et al. Protist-type lysozymes of the nematode Caenorhabditis elegans contribute to resistance against pathogenic Bacillus thuringiensis (2011).  PLoS One 6(9): e24619

Byrnes EJ III, et al.  A diverse population of Cryptococcus gattii molecular type VGIII in Southern Californian HIV/AIDS patients (2011).  PLoS Pathogens 7(9): e1002205

Raghunathan, D et al.  SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection (2011).  Infection & Immunity, in press

Carnell M, Zech T, Calaminus S, Seiji U, Hagedorn M, Johnston SA, May RC, Soldati T, Machesky LM, Insall RH.  Actin polymerization driven by WASH causes vesicle neutralization and V-ATPase recycling before exocytosis.  J Cell Biol, 2011.  193(5):831-9.

Chayakulkeeree M, Johnston SA, Oei JB, Lev S, Williamson PR, Wilson CF, Zuo X, Leal AL, Vainstein MH, Meyer W, Sorrell TC, May RC, Djordjevic JT.  SEC14 is a specific requirement for secretion of phospholipase B1 and pathogenicity of Cryptococcus neoformans.  Mol. Micro, 2011.  80(4): 1088-1101.

Marsh EK, van den Berg MC & May RC.  Single gene immunological trade-offs in an invertebrate.  PLoS ONE, 2011.  6(3): e16839.

Voelz K, Johnston SA, Rutherford JC & May RC.  Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci (2010).  PLoS ONE 5(12): e15968

Marsh EK.  Host-pathogen interactions in the innate immune response of the nematode Caenorhabditis elegans (2010).  PhD Thesis

Voelz K.  Macrophage-Cryptococcus interactions during cryptococcosis (2010).  PhD Thesis

Johnston SA & May RC. The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation (2010).  PLoS Pathogens 6(8): e1001041

Ma H & May RC.  Mitochondria and the regulation of hypervirulence in the fatal fungal outbreak on Vancouver Island (2010).  Virulence 1(3): 197-201

Amrit, FRG.  The significance of DAF-16 and its role in the phenotypic covariance of longevity, immunity and stress resistance in the Caenorhabditis nematodes (2010).  PhD Thesis

Voelz K & May RC.  Cryptococcal interactions with the host immune system (2010).  Eukaryotic Cell 9(6): 835-846

Amrit FRG & May RC.  Younger for longer: insulin signalling, immunity and ageing (2010).  Current Aging Science 3:166-176

Byrnes EJ et al. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the Northwest United States (2010).  PLoS Pathogens 6(4): e1000850.

(This article was also reported in Science)

Amrit FRG, Boehnisch CML & May RC. Phenotypic Covariance of Longevity, Immunity and Stress Resistance in the Caenorhabditis Nematodes (2010).  PLoS ONE 5(4): e9978

(This article made front page news (here) and was widely covered in the popular press)

May RC et al.  The genome sequence of E. coli OP50 (2009).  Worm Breeders’ Gazette 18(1): 24

Ma H.  Intracellular parasitism of macrophages by Cryptococcus (2009).  PhD Thesis

Ma H et al. The fatal fungal outbreak on Vancouver Island is characterised by enhanced intracellular parasitism driven by mitochondrial regulation (2009).  PNAS 106(31): 12980-12985

Voelz K, Lammas DA & May RC.  Cytokine signaling regulates the outcome of intracellular macrophage parasitism by Cryptococcus neoformans (2009).  Infection & Immunity 77(8): 3450-3457

Ma H & May RC.  Virulence in Cryptococcus species (2009).  Advances in Applied Microbiology 67: 131-190

Ma H, Croudace JE, Lammas DA & May RC.  Direct cell-to-cell spread of a pathogenic yeast (2007).  BMC Immunology 8:15

May RC.  Gender, immunity and the regulation of longevity (2007).  Bioessays 29:1-8

Ma H, Croudace JE, Lammas DA & May RC.  Expulsion of live pathogenic yeast by macrophages (2006).  Current Biology, 16(21): 2156-2160

van den Berg MC, Woerlee JZ, Ma H & May RC. Sex-dependent resistance to the pathogenic fungus Cryptococcus neoformans (2006).  Genetics 173(2): 677-683

Below is a selected list of some of our publications (click on the link to access the full paper).  You can access our complete publication list via PubMed or Research Gate


Engelthaler DM et al.  Cryptococcus gattii in North American Pacific Northwest: Whole-Population Genome Analysis Provides Insights into Species Evolution and Dispersal
 (2014).  mBio 5(4): e01464
Springer DJ et al.  Cryptococcus gattii VGIII Isolates Causing Infections in HIV/AIDS Patients in Southern California: Identification of the Local Environmental Source as Arboreal
 (2014).  PLOS Pathogens 10(8): e1004285
Voelz et al.  ‘Division of Labour’ in response to host oxidative burst drives a fatal Cryptococcus gattii outbreak (2014). Nature Communications 5:5194
Gilbert AS et al.  Fungal pathogens: Survival and Replication wtihin Macrophages (2014). Cold Spring Harb Perspect Med.
Barnes RA et al.  Antifungal research: more research needed (2014).  Lancet 384(9952):1427
Smith LM et al.  The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation (2014). Cellular Microbiology
Evans RJ et al.  Cryptococcal phospholipase B1 (Plb1) is required for intracellular proliferation and control of titan cell morphology during macrophage infection (2015).  Infection & Immunity.

Gilbert AS, et al.  Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP kinase ERK5 (2017).  Science Advances 3(8): e1700898.

Farrer RA, et al.  Microevolutionary traits and comparative population genomics of the emerging pathogenic fungus Cryptococcus gattii (2016).

Philos Trans R Soc Lond B Biol Sci. Dec 5;371(1709). pii: 20160021. doi: 10.1098/rstb.2016.0021.

Taylor-Smith LM, May RC.  New weapons in the Cryptococcus infection toolkit. (2016)

Curr Opin Microbiol. 2016 Dec;34:67-74. doi: 10.1016/j.mib.2016.07.018.

Samantaray S, et al. Novel cell-based in vitro screen to identify small-molecule inhibitors against intracellular replication of Cryptococcus neoformans in macrophages (2016).

Int J Antimicrob Agents. 2016 Jul;48(1):69-77. doi: 10.1016/j.ijantimicag.2016.04.018.

May RC. Custom-Made Quorum Sensing for a Eukaryote (2016).

Dev Cell. 6;37(5):391-2. doi: 10.1016/j.devcel.2016.05.014. PubMed PMID: 27270036.

Bojarczuk A, et al. Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection (2016)

Sci Rep. 2016 18;6:21489. doi: 10.1038/srep21489.

Johnston SA, Voelz K, May RC.  Cryptococcus neoformans Thermotolerance to Avian

Body Temperature Is Sufficient For Extracellular Growth But Not Intracellular

Survival In Macrophages (2016)

Sci Rep. 2016 Feb 17;6:20977. doi: 10.1038/srep20977.

May RC, Stone NR, Wiesner DL, Bicanic T, Nielsen K. Cryptococcus: from

environmental saprophyte to global pathogen (2016)

Nat Rev Microbiol. 14(2):106-17. doi: 10.1038/nrmicro.2015.6.

Bielska E, May RC. What makes Cryptococcus gattii a pathogen? FEMS Yeast Res.

2016 Feb;16(1):fov106. doi: 10.1093/femsyr/fov106. Epub 2015 Nov 26. Review.

PubMed PMID: 26614308.