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I Introduction 
The Supplementary Materials provides further details of the iDynoMiCS model 
description and validation against previous models. 
 

II Random Number Generation 
Random numbers are generated using the Mersenne Twister MT19937 algorithm 
(Makoto and Takuji 1998) because of its satisfactory statistical properties and because its 
very long period before numbers will repeat (219937 − 1) ensures that simulations will not 
exhaust the stream of unique random numbers. iDynoMiCS will output the state of the 
random number generator upon completion of a simulation, and if a particular simulation 
is to be repeated with identical parameters and initial conditions a given number of times 
the random number generator is not restarted but instead reads the previous state from file 
in order to use non-overlapping sets of pseudo-random numbers. This enables replication 
of runs to study the effect of stochasticity. Random numbers drawn from a normal 



distribution are restricted to be in the range mean ± 2 SD. Moreover, the randomly varied 
parameter is guaranteed to have the same sign as the default value of that parameter. 
 

III Boundary Conditions 
Here are more complete descriptions of the boundary conditions included in the initial 
iDynoMiCS release. 

− No-Flux Boundary: This boundary is impermeable to solutes and agents; as a 
consequence, the normal components of solute concentration gradients will be 
zero at this boundary. Mathematically, the boundary condition for the solutes is 
given as: 

where ( )xS   is the solute concentration in the domain, n̂ is the boundary normal 
vector and Γ  is the boundary of interest. Agents attempting to cross the boundary 
are prevented from doing so (Figure S1). 

− Constant Concentration Boundary: The boundary represents, for example, the 
connection to a larger system where the concentration can be considered constant. 
The solute concentrations at this boundary are fixed, and agents crossing this 
boundary are considered to have entered the planktonic bulk domain. The solute 
condition is given mathematically by: 

where  S is the solute concentration in the domain, SB is the concentration at the 
boundary, and Γ  is the boundary of interest. 

− Variable Concentration Boundary: This boundary simulates the connection to a 
larger bulk liquid subject to a dilution process, as would be typical for a reactor. 
Behaviour for agents does not differ from the constant concentration boundary 
case (and so within the computational domain the boundary condition is 
identical), but solute dynamics in the bulk compartment require an additional 
computational step. In this step, ordinary differential equations describing the 
reactions occurring in the biofilm and the hydraulic processes affecting the bulk 
liquid are solved in order to determine the bulk concentration at the next time-
step. 

− Membrane Boundary: A membrane boundary has a selective permeability, 
meaning it behaves like a zero-flux boundary for agents and most of the solutes, 
but for selected solutes includes specification of the diffusivity in the membrane 
and the opposing-side solute concentration. Then the boundary condition is given 
as: 

where DS is the solute diffusivity inside the computation domain, DM is the solute 
diffusivity inside the membrane, and the boundary designations inΓ  and outΓ  
represent derivatives taken on the inside and outside of the boundary, 
respectively. 
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− Periodic Boundary: It is computationally unfeasible to simulate a micro-scale 
world on a macro-scale level, so oftentimes a small spatial sub-region is assumed 
to represent the system as a whole; in this case, periodic boundaries are used to 
remove artificial edge effects by assuming the simulated region adjoins other, 
similar, regions. As a consequence, boundaries in some chosen directions 
(generally for movements parallel to the substratum) are periodic, which means 
that the solute concentrations and solute gradients are constant across the 
boundary, and that agents travelling through one boundary will be translated to 
the other side of the domain (Figure S1). For the solutes, this condition is 
expressed as: 

where nearΓ  and farΓ  represent the two boundaries connected periodically. 
 

IV Defining the Diffusion Layer 
The diffusion layer is a region separating the biofilm from the bulk compartment, and in 
this region the solute concentrations vary spatially only due to diffusion, in comparison to 
the biofilm region where concentrations vary due to diffusion and to 
production/consumption, or the bulk compartment region where the solute concentrations 
do not vary spatially. The diffusion layer thickness BLl  is specified by the user, and is 
generally on the order of tens of microns in thickness. During a simulation, the location 
of the boundary between the diffusion layer and bulk compartment ( BLΓ  in Figure 1 in 
the manuscript) must be calculated at each step to account for any change in the position 
of biofilm surface during that step. The location of the boundary is found by a dilation 
process, where for each point above the biofilm surface a spherical region of radius BLl  is 
scanned for the presence of biomass or carrier. If the surrounding sphere contains 
biomass or carrier, then the point is considered to be within the diffusion layer, but if the 
sphere does not contain biomass or carrier then the point is considered outside the 
diffusion layer. 
 

V Computing the Pressure Field 
The positions of agents within the biofilm are affected on a small scale by local 
mechanical forces, such as shoving by neighbours, and also by larger-scale movements of 
biofilm biomass driven by the pressure generated by an increase (growth) or decrease 
(decay) of biovolume. A novel feature of iDynoMiCS is that the particles (agents) are 
moved by both small and large scale mechanical forces. As a supplement to the 
description of the pressure field in the main text,
 Figure S2 shows the distribution of pressure in a biofilm growing under diffusion-limited 
conditions. The difference in growth rates in each region results in a distribution of 
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pressure: maintenance terms create a shrinking of the biofilm toward the bottom 
(negative pressure, blue and cyan), while high substrate concentrations yield biofilm 
growth at the top (positive pressure, yellow and orange). A zero-pressure line (green) 
separates these two regions. 
 

VI Agent Shoving 
During each global time-step, agent divisions (Figure S3) and agent growth will lead to 
many cases where neighbouring agents overlap. A relaxation algorithm is used to find 
iteratively the new overlap-minimizing steady-state configuration of agent locations at 
the end of each time-step (Algorithm S1). During this process, any overlap of agents is 
estimated not on the basis of the agent radius Totalj ,ϕ  (the total radius includes all interior 
compartments as well as any capsule), but rather on the basis of a shoving radius Shovej ,ϕ , 
where TotaljShoveShovej k ,, ϕϕ ⋅=  (Figure S4). The shoving factor Shovek  allows adjustment to 
the degree of packing of the agents, and the shoving radius is used to calculate the 
overlap δ  between two adjacent agents: 

In this expression, 2,1d  is the distance between the centres of the two agents. Within each 
iteration step, each agent is visited, and for each neighbour of the currently focal  agent 
any overlap is addressed with equally far but opposite movements of the agents 
(Algorithm S1). However, rather than moving the agents immediately, all such overlap-
relieving movements are summed and the net movement is applied after all such 
movements have been calculated (Algorithm S1). Saving the movements and applying 
them only at the end eliminates any bias that may arise when some agents are moved 
before others. 
 

VII  Erosion and Detachment 
iDynoMiCS implements a choice of empirical detachment functions, where the rate of 
detachment is typically a function of biofilm height. Numerically, this is solved using 
standard level-set methods. More formally, if x  is the coordinate vector of a point 
located on the biofilm-liquid interface, and )(ˆ xn   a unit vector normal to the surface at 
that point x , then the front velocity due to erosion forces is given by: 
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where )(xFDet
  is a detachment speed function (units )/( hrmµ ) that may in principle take 

any form (see below for common forms). This detachment speed can be propagated to all 
points in the domain using the Fast Marching Method (Sethian 1999), a numerical 
technique used to calculate the time-of-crossing for a moving interface. The method is 
used to compute at any point in the biofilm the time required for the interface to reach 
this point, assuming the interface velocity does not vary in time (which for a single time-
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step it does not). This is accomplished by starting from the current interface and 
computing the time-of-crossing for points near the interface, and then proceeding towards 
the biofilm interior to extend the time-of-crossing to neighbouring points. By this 
iterative process it is possible to define the whole set of surfaces describing the time 
course of the boundary. Figure S5 shows an example of the advance of erosion by 
contour lines, with each line corresponding to the position of the erosion front at different 
points in time under the assumption of zero growth. 
 
Erosion effects are applied during each time-step by first computing the time-of-crossing 
map for the current biomass distribution. The time-of-crossing value Ti  is calculated for 
each grid element i, and Ti  specifies the time at which the biofilm interface would cross 
that point i if the biofilm/liquid interface eroded at a constant speed. The values of Ti  will 
tend to be larger for a slower-moving interface (low erosion), and will be smaller for a 
faster-moving interface (high erosion). After being computed, the time-of-crossing value 
Ti  for each grid element is compared to the global timestep globaltΔ , yielding a ratio r: 

This ratio r captures the fraction of mass in an element that should be lost through erosion 
during a single timestep: during erosion, the mass of all agents whose centres lie in that 
element is decreased by r%, and an agent is removed if its mass becomes zero. Note that 
r is capped at a value 1 if the time-of-crossing is smaller than the global time-step. For 
high erosion speeds the time-of-crossing value iT  will be smaller, and so a larger fraction 
of the biomass will be removed. The time-of-crossing map is recomputed during each 
step in order to account for any structural changes that may have occurred during the 
current step. 
 
The detachment speed )(xFDet

  may in principle take any form, but iDynoMiCS includes 
two common detachment speed functions. The first is a height-based speed: 

where Detk  is the detachment strength coefficient (with units of 1)( −⋅hrmµ ), and h  is the 
local height above the carrier. This speed function was first introduced for 1D continuum 
models, and is preferred because it leads to a steady-state biofilm of constant thickness 
(Wanner and Gujer 1986). The second detachment speed included in iDynoMiCS is a 
height- and biomass-based detachment: 

where Detk  is again the detachment strength coefficient (with units of )/( 4 hrmfg ⋅µ ),h  
is again the local height above the carrier, and Xρ  is the local biomass concentration in 
the biofilm. This detachment function will lower the detachment speed when the local 
biomass concentration is high (i.e. denser parts of the biofilm are more difficult to 
remove). 
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In addition to erosion on the biofilm surface, iDynoMiCS can also make use of an 
imposed maximum thickness parameter that may be used to model a constant-depth film 
fermenter (Peters and Wimpenny 1988) or to contain the biofilm within the 
computational domain. When such a thickness is imposed, any agent crossing this 
boundary is removed from the biofilm. 
 

VIII Individual-based Chemostat 
The chemostat version is mainly used as a reference case without spatial structure to 
evaluate the effect of spatial structure so characteristic for biofilms. In the chemostat 
mode, some of the steps in each iteration of the algorithm are skipped for efficiency, 
namely the stages of spatial positioning of agents, computation of the pressure field and 
pressure-driven movements, and shoving and biomass detachment. In a chemostat, the 
medium is assumed to be uniformly mixed, and hence all agents ‘see’ the same 
concentration for all solutes. The concentrations of the solutes are governed by the 
processes of dilution (inflow and outflow at the same rate) and bacterial growth. The 
dilution rate is used to calculate the fraction of agents to be removed stochastically from 
the system during the current time step. Because the chemostat equations are typically 
stiff ODEs, the diffusion-reaction problem is solved using a modified Rosenbrock pair 
formula based on partial derivatives (Shampine 1982; Shampine and Reichelt 1997). The 
method is very dependent on an accurate Jacobian matrix (which in our case is calculated 
analytically), and in this method the function is evaluated twice, yielding an intermediate 
solution estimate F1, which is used to obtain the solution for the next time-step, F2. If the 
calculated error is smaller than a given tolerance, then the step is considered successful 
and the predicted F2 solution will be used as the initial state for the next step; otherwise, 
the solver time step is decreased according to the standard rule used in numerical 
integration for initial value problems (Gear 1971), and the step is carried out once more. 
 
Note that for stochastic dilution in small systems (few cells; small volumes), any 
variation in the number of agents to be removed for each species can lead to 
discrepancies with the deterministic solution (as was the case in the chemostat model 
verification). Whether these differences will lead to divergent results will depend on the 
feedbacks in the system. In our test case, results converged to the deterministic steady 
state solution despite strong initial differences due to the stochastic initialization of the 
IbM. In a bigger system, these stochastic effects will be diminished and results converge 
toward the mass-action solution; therefore it is recommended to vary the system size to 
evaluate the importance of stochasticity. 
 

IX Example Reaction Description 
Table S1 illustrates a simple example reaction matrix describing growth, maintenance 
and decay reactions. It also illustrates how reactions can affect and be catalysed by 
different compartments of the structured individual. In this example, the entity is 



composed of three compartments: the active biomass (CX), an inert compartment (CI) and 
a capsule of EPS (CEPS); here EPS is considered to be a product of the growth reaction. It 
is assumed that all active reactions are independent and that the global variation of mass 
for a given solute or agent is obtained by summing the uptake rates of all active reactions. 
In this example we have the following for the biomass compartment: 

The expression for the EPS capsule takes a similar form: 

and the rate expressions for the solutes and other particulate components are constructed 
in the same manner. 
 

X Validation Against Benchmark Problem BM3 
The iDynoMiCS platform has been validated against the benchmark for multi-species 
biofilm models proposed by the International Water Association (IWA) task group on 
biofilm modelling in order to compare the variety of modelling approaches used 
(Noguera and Picioreanu 2004; Rittmann et al. 2004). The benchmark problem is meant 
to furnish a realistic two-species biofilm wastewater treatment scenario, where the 
complexity of the system is however constrained by the fact that all models need to be 
able to simulate this scenario. Therefore, the detachment follows an all-or-nothing 
behaviour: any part of the biofilm exceeding a given maximal thickness is removed. The 
benchmark includes an autotrophic bacterial species oxidising ammonia to nitrate and a 
heterotrophic species oxidising COD. Both species carry out growth, maintenance and 
decay reactions as described in Table S2. Parameters describing the benchmark problem 
are given in Table S3, and the environmental conditions in Table S4. Finally, Table S5 
compares the output of the iDynoMiCS simulations (two replicate simulations gave the 
same output) with the numerical results (only steady state concentrations of the solutes in 
the bulk, but other state variables are coupled) of four different previous models, 
published in (Noguera and Picioreanu 2004). Since the solute concentrations are not 
independent variables, we have used Hotelling’s T2 test, the multivariate extension of the 
t-test (Anderson 2003). The T2 test was performed using the add-on package ICSNP 
(version 1.0-7) for R (version 2.10.0, (R Development Core Team 2009)). The standard 
and high N:COD cases show good agreement between iDynoMiCS and previous models 
considering the variation between models and the differences in representing the biomass 
(% deviation < 10%, p-values > 15%). However, results in the low N:COD case are 
significantly different (p-value < 5%), with mean values differing < 15% between 
previous models and iDynoMiCS. This may be expected since it is the case that produced 
the highest variation of model outputs in the original benchmark study, suggesting that 
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this case is particularly sensitive to idiosyncrasies of models and implementations 
(Rittmann et al. 2004). 
 

XI Validation of the Individual-based Chemostat 

Against the ODE Model 
In order to test our individual-based chemostat, we simulated microbial growth using a 
multi-species community composed of COD-oxidising heterotrophs and ammonia-
oxidising autotrophs, based on the BM3 benchmark problem (Tables S2, S3, and S4). For 
simplicity, we ignored the maintenance and inactivation reactions in these tests, and used 
a lower influent COD concentration (3 mg COD/L rather than 30 mg COD/L). The 
corresponding deterministic model was simulated and analysed using Matlab (Ordinary 
Differential Equation solver ode23s), and the deterministic solution obtained this way 
was compared with the stochastic solution from iDynoMiCS. Solutions from the two 
simulation methods were compared in the solute and biomass concentrations predicted by 
each. In all simulations, we used a dilution rate of 0.02 hr-1, and a timestep of 1 hour. For 
these conditions, the relative error of steady state variables was <2% for solutes, < 1% for 
heterotrophs, and <15% for autotrophs. The higher discrepancy for the autotrophs is due 
to there being fewer individuals (usually only 1) compared to the heterotrophs (which 
usually number in the thousands); when the number of individuals is small, any variation 
(such as that due to stochastic dilution) is amplified for the population as a whole. The 
errors are lower when the time-step is reduced (e.g., autotroph error dropped to 9% when 
using a timestep of 0.5 hour rather than 1 hour), or when the system size is increased to 
closer approximate the continuous nature of the ODE solution (data not shown); these 
results indicate that the models’ results converge as expected. In addition, comparison of 
the time series of the stochastic iDynoMiCS runs (2 independent runs) with the 
deterministic model illustrates rapid convergence of the simulation results as the 
simulations progress toward the steady state, even after starting with quite different initial 
biomass values due to the stochastic initialization of the IbM (Figure S6). 
 

XII Implementation Details of the Metabolic Switch Case 

Study 
Included here are further details on the implementation of the case study in the 
manuscript. The switch algorithm (Figure S7) is implemented with two agent states, each 
of which has a different set of active metabolic pathways. When conditions are suitable 
for the agent to switch its metabolism, a switch request is made, but the lag period must 
pass before the change of active metabolisms actually occurs. When a switch is finally 
made, the pathways associated with the current switch state are deactivated, and the 
pathways associated with the new switch state are activated. Any pathways specified 
outside the switch description are not affected in this process. Note that the behaviour of 
the switch is identical when the switch threshold is crossed from either direction, just that 



the action on the pathways will be opposite. In the event that the switch condition 
reverses while the agent is within the lag period, the switch request is cancelled and when 
conditions are right for a switch the process must restart. 
  
In this study, the idealized wastewater treatment environment has a bulk compartment 
containing COD, dissolved oxygen, and nitrate (for simplicity, we use nitrate directly 
rather than using influent ammonium and aerobic nitrifiers as the nitrate source). The 0.2 
mg O2/L threshold concentration (Ye et al. 1995) has been used as the crossover 
concentration in a previous model of O2-inhibited denitrification to study the feasibility 
of simultaneous nitrification and denitrification in membrane reactors (Matsumoto et al. 
2007). Because of mutually exclusive gene expression, either aerobic or anaerobic 
pathways are active at any one time, but not both. 
 
In the cost-for-induction cases, we calculate the maintenance rates as follows. If we 
invert the induction lag values we obtain rates of induction, which are 1, 0.33, and 0.2 h-1 
for the Lag-1, Lag-3, and Lag-5 species, respectively. We then make the assumption that 
50% of cellular maintenance is due to mRNA and protein turnover, and that for species 
with a shorter induction lag the protein turnover rate should be higher because it is 
increased turnover that enables faster induction. Using the Lag-5 maintenance rate as a 
base for comparison, we compute maintenance rates for the other species with an 
expression that increases the protein-associated component of the maintenance rate in 
proportion to the ratio of the induction rates: 
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Here 
m
HXb  is the maintenance rate for a generic heterotrophic Lag-X species, pf  is the 

fraction of maintenance that is protein-associated (assumed to be 50%), Xr  is the 

induction rate for a generic Lag-X species, and 
m
Hb 5  and 5r  are the maintenance and 

induction rates for the Lag-5 species, respectively. This expression yields the 
maintenance rates used in this study for the cost-for-faster-induction case: 0.0176 and 
0.0399 h-1 for the Lag-3 and Lag-1 species, respectively; the Lag-3 maintenance rate is 
32% higher than for the no-cost case, and the Lag-1 rate is 3 times higher. 
 
During model initialization, we inoculated a model biofilm with 10 agents of each species 
evenly spaced on the substratum, with each species forming a contiguous group covering 
1/3 of the space. 
 
Also included with this supplementary text are videos showing the growth of the biofilm 
in each of the cost and no-cost switch cases shown in Figure 7, along with a video 
showing growth of a biofilm in 3D that was illustrated in Figure 8. 



 

XIII Chemostat Results for Metabolic Switch Case 
Simulations to test for mutual invasibility were carried out to determine whether 
coexistence is possible or which strategy is more competitive (3 replicates).  
 
If the cost of switching is included, the faster changing environments (2, 4, 8 hourly 
pulses) favour the fastest adapting strategy Lag1, while the slower changing 
environments (16, 32 hourly pulses) favour the slower adapting strategy Lag3, and the 
constant environments (aerobic or anaerobic) favour the slowest adapting strategy Lag5 
(Table S6). 
 
If switching is assumed to be free of costs, the fastest adapting strategy Lag1 dominates 
in all fluctuating environments, while in the two constant environments, none of the 
strategies has any advantage, hence the results are entirely due to chance (stochastic 
dilution leading to complete washout of the invader in some runs but not in others) (Table 
S6). 
 

XIV iDynoMiCS Class Structure 
Entire projects with many different simulations may be performed without any 
programming of iDynoMiCS because all parameters of the system, the solutes, and the 
microbes can be read in from a parameter file (the protocol file) in the eXtensible Markup 
Language (XML) format. Programming is only necessary when new boundary 
conditions, new kinetic equations, or species with new behaviour are to be used. In that 
case, it is useful to know that iDynoMiCS is written entirely in the easy-to-program and 
well-known object-oriented programming language Java, which also runs on virtually 
any operating system. The object-oriented structure means that each major piece of the 
model is self-contained and may easily be updated or replaced with a similar class that 
offers different functionality; for example, one might wish to replace the default multi-
grid solute solver with a new solver that offers different functionality. In addition to 
enabling modularity, the object-oriented structure also allows more complex classes to 
derive from simpler ones that do not require the complexity. For example, agents in 
iDynoMiCS are made up of a hierarchy that adds increasing complexity at each stage: 
first existence, then component masses, then reactions, then location and size, and finally 
any species-specific behaviour. Because of this structure, adding agents to iDynoMiCS 
with new types of behaviour rather than just different parameters simply requires creating 
a new subclass from a similar, already-existing agent type. Other class types that exhibit 
an inheritance hierarchy include: reactions, detachment functions, spatially-varying 
concentrations, and the boundary conditions. Previous IbMs have also used a similar 
object-oriented design, but one major difference between iDynoMiCS and previous 
models is that iDynoMiCS contains separate classes to describe reactions rather than 
encapsulating reactions within species classes; this new structure allows for the flexibility 
required to carry out the metabolic switch example in the manuscript. 



 

XV Obtaining and Using iDynoMiCS 
The iDynoMiCS source code will be made available upon publication of this article at the 
project website after registration of the user (http://www.idynomics.org). The base 
software package may also be obtained by contacting one of the authors of this 
manuscript. Future software improvements and developments will be released similarly, 
though major improvements may be released only after publication in a scientific journal, 
if appropriate. 
 
iDynoMiCS is free software released under a GPL-like CeCILL license that allows 
modification and redistribution of the software under the terms of the license 
(http://www.cecill.info/index.en.html). There is no commercial support provided for 
users of iDynoMiCS, nor is guaranteed support of any kind provided. There will, 
however, be a user mailing list to assist with answering questions, and a tutorial and some 
other materials will be available on the project website. Also, we intend to run a one-
week course introducing the software every year. The authors welcome further 
development by any interested parties, and 3rd-party submissions may be added to the 
code base upon review. 
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XVII Tables 
Table S1: Simple example reaction description and stoichiometric matrix 

Reaction Solutes Biomass Kinetic Expression SCOD SO2 XA XEPS XI 

Growth 
1

HY
−  1 H

H

Y
Y
−

−  1 EY−  EY   
A

O
S
O

O

COD
S
COD

COD
A X

SK
S

SK
SXr

22

2max
11 ++

== µγ  

Maintenance  -1 -1   AXr 22 γ=  
Decay   -1  1 AXr 33 γ=  
EPS release    -1  EPSXr 44 γ=  
 
 
 
 
 

Table S2: Reactions matrix for BM3 problem (Rittmann et al. 2004) 

Reaction Solutes Biomass Kinetic Expression SCOD SO2 SN XH XA XI 

Heterotroph 

Growth 
1

HY
−  1 H

H

Y
Y
−

−   1   max 2

2 2

COD O
H HH H

COD COD O O

S S X
K S K S

µ
+ +

 

Maintenance  -1  -1   2

2 2

m O
H HH

O O

Sb X
K S+

 

Decay    -1  1 i
H Hb X  

Autotroph 

Growth  
4.57 A

A

Y
Y
−

−  1

AY
− * 1   max 2

2 2

.N O
A AA A

N N O O

S S X
K S K S

µ
+ +

 

Maintenance  -1  -1   2

2 2

m O
A AA

O O

Sb X
K S+

 

Decay    -1  1 i
A Ab X  

*Note: the coefficient on SN for the autotrophic growth process is corrected from the incorrect coefficient 
given in (Rittmann et al. 2004). 
 
 
 



Table S3: Parameter values for BM3 problem (Rittmann et al. 2004) 

 Parameter Value 
Heterotroph Maximal growth-rate max

Hµ  0.25 h-1 
Saturation constant for 
COD 

H
CODK  4•10-3 gCOD•L-1 

Saturation constant for O2 2
H
OK  0.2•10-3 gO2•L-1 

Maintenance rate m
Hb  0.0133 h-1 

Inactivation rate i
Hb  0.0033 h-1 

Biomass yield HY  0.63 gCOD-X / 
gCOD-S 

Autotroph Maximal growth-rate max
Aµ  0.0417* h-1 

Maintenance rate m
Ab  0.005 h-1 

Inactivation rate i
Ab  0.00125 h-1 

Saturation constant for N A
NK  1•10-3* gN•L-1 

Saturation constant for O2 2
A
OK  0.5•10-3 gO2•L-1 

Biomass yield AY  0.24* gCOD-X/gN 
*Note: these values in (Rittmann et al. 2004) were published erroneously. We have used the values given in 
the table, which were those actually used in the previous BM3 simulations. 
 
 
 
 
 

Table S4: Environmental conditions for BM3 problem (Rittmann et al. 2004) 

Scenario Standard High 
N:COD 

Low 
N:COD 

CODin [g COD/m3] 30 30 30 
+
inNH 4  [g N/m3] 6 30 1.5 

O2 [g COD/m3] 10 10 10 
D  [hour-1] 0.67 
σR [m2/m3] 80 
Biomass Density [g COD/L] 15* 
Thickness [µm] 500 

*Note: this value is corrected from the parameter values given in (Rittmann et al. 2004). 
 



Table S5: Results of BM3 simulations 

Model Name 

Standard Case High N:COD Low N:COD 

COD 
[mg/L] 

+
4NH  

[mg 
N/L] 

COD 
[mg/L] 

+
4NH  

[mg 
N/L] 

COD 
[mg/L] 

+
4NH  

[mg 
N/L] 

CP 5.14 1.50 5.45 18.15 4.39 0.44 
DN 5.14 1.74 5.56 20.26 4.98 0.48 
W (1D) 5.39 1.59 5.86 18.93 5.19 0.48 
M1 (1D) 4.84 1.45 5.35 17.03 4.66 0.45 
Average of previous 5.13 1.57 5.56 18.59 4.81 0.46 
Std dev. of previous 0.23 0.13 0.22 1.36 0.35 0.02 
% variation 4.39 8.11 3.97 7.30 7.33 4.46 
iDynoMiCS 5.23 1.46 5.74 17.3 5.05 0.53 
% deviation of 
iDynoMiCS from above 
average 

2.00 7.01 3.33 6.95 5.10 14.59 

p-values from T2 test 0.3033 0.1796 0.0082 
The previous models are taken from the IWA BM3 results (Noguera and Picioreanu 2004), and the models 
included are CP (a particle-based model), DN (a cellular automata model), W (a 1D continuum model), and 
M1 (a 1D continuum model). 



Table S6: Chemostat results for the metabolic switch case study 

With cost Without costs 
Aerobic: Lag5 dominant strategy 

   Invader 
Resident Lag1 Lag3 Lag5 

Lag1 X 3/3 3/3 
Lag3 0/3 X 3/3 
Lag5 0/3 0/3 X 

 

Aerobic: Neutral fitness 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 1/3 2/3 
Lag3 2/3 X 0/3 
Lag5 3/3 0/3 X 

 

Anaerobic: Lag5 dominant strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 3/3 3/3 
Lag3 0/3 X 3/3 
Lag5 0/3 0/3 X 

 

Anaerobic: Neutral fitness 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 1/3 0/3 
Lag3 1/3 X 1/3 
Lag5 2/3 2/3 X 

 

Pulse 2h: Lag1 dominant strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 0/3 0/3 
Lag3 2/3 X 0/3 
Lag5 3/3 0/3 X 

 

Pulse 2h: Lag1 dominant strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 1/3 0/3 
Lag3 1/3 X 1/3 
Lag5 2/3 2/3 X 

 

Pulse 4h: Lag1 dominant strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 0/3 0/3 
Lag3 3/3 X 0/3 
Lag5 3/3 3/3 X 

 

Pulse 4h: Lag1 dominant strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 0/3 0/3 
Lag3 3/3 X 0/3 
Lag5 3/3 2/3 X 

 

Pulse 8h: Lag1 best strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 0/3 0/3 
Lag3 0/3 X 0/3 
Lag5 3/3 3/3 X 

 

Pulse 8h: Lag1 dominant strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 0/3 0/3 
Lag3 3/3 X 0/3 
Lag5 3/3 2/3 X 

 

Pulse 16h: Lag3 dominant strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 0/3 0/3 
Lag3 0/3 X 0/3 
Lag5 3/3 3/3 X 

 

Pulse 16h: Lag1 dominant strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 0/3 0/3 
Lag3 3/3 X 0/3 
Lag5 3/3 3/3 X 

 

Pulse 32h: Lag3 dominant strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 0/3 0/3 
Lag3 0/3 X 0/3 
Lag5 3/3 3/3 X 

 

Pulse 16h: Lag1 dominant strategy 
Invader 

Resident Lag1 Lag3 Lag5 

Lag1 X 0/3 0/3 
Lag3 3/3 X 0/3 
Lag5 3/3 3/3 X 

 



 
• While	
  number	
  of	
  agents	
  moving	
  is	
  greater	
  than	
  5%:	
  

o For	
  each	
  agent	
  Pi:	
  
§ For	
  each	
  agent	
  Pj	
  in	
  the	
  neighbourhood	
  of	
  Pi:	
  

• Compute	
  the	
  agent-­‐agent	
  overlap	
  distance	
  
ijδ .	
  

• Store	
  a	
  movement	
  of	
   2/ijδ 	
  for	
  agent	
  Pi	
  in	
  
the	
  direction	
  away	
  from	
  Pj	
  (add	
  to	
  stored	
  
movement).	
  

• Store	
  a	
  movement	
  of	
   2/ijδ 	
  for	
  agent	
  Pj	
  in	
  
the	
  direction	
  away	
  from	
  Pi	
  (add	
  to	
  stored	
  
movement).	
  

§ End	
  
o End	
  
o For	
  each	
  agent	
  Pi:	
  

§ If	
  the	
  stored	
  movement	
  is	
  nonzero:	
  
• Apply	
  the	
  stored	
  movement.	
  
• Increment	
  the	
  count	
  of	
  agents	
  moved.	
  

§ End	
  
o End	
  

• End	
  

Algorithm S1: Pseudo-code describing the procedure for agent shoving. 



 

XVIII Figures 

 

Figure S1: Agent behaviour at boundaries 

Shown is the behaviour of located agents crossing a (1) periodic and a (2) zero-flux 
boundary. Solid arrows represent the initial movement, dashed arrows the corrected 
movement. 

 

Figure S2: Pressure field contours 
The red and yellow contours near the finger tips represent positive pressure leading to expansion, while the 
darker blue contours in the depths of the biofilm represent negative pressures leading to contraction. 
 



 

Figure S3: Cell division. 
Cell division with stochastic deviation from symmetric cell division yields unequal daughter cell volumes. 
There is also stochastic selection of the division direction. 
 
 
 
 
 
 

 

Figure S4: Shoving of neighbouring cells 1 and 2 is triggered if there is an overlap 
between them. 

Overlap distance between agents is δ, distance between cell centres is d1,2, total agent radius is Totalj ,ϕ , and 

shoving radius is TotaljShoveShovej k ,, ϕϕ ⋅=
. 

 
 



 

Figure S5: Example of isolines of erosion time computed with the fast marching 
algorithm 

The plotted erosion strength is a quadratic function of height with a high strength of 

kDet = 200 µm !h( )"1 , and the isolines represent the batch of agents that will be removed after an integer 
number of hours. This high erosion strength will remove a high amount of biomass very quickly. 
 



 

Figure S6: Comparison of simulations of the stochastic chemostat model using 
iDynoMiCS with simulations of the deterministic ODE model using the ODE solver 

ode23s of Matlab. 

Circles indicate the deterministic solution, the two solid lines correspond to two of the three iDynoMiCS 
simulations performed; these two envelope the third replicate The dashed line represents the means of each 
time point of the 3 replicates. Growth parameters were as in BM3 (except maintenance and inactivation 
reactions, which were not considered in this analysis) and environmental conditions were as in the Low 
N:COD Scenario, but using a COD concentration of 3 mg COD/L. 
 
 



 

Figure S7: Metabolic switch algorithm 

The behaviour is identical for any type of switching (activating or deactivating pathways). First the 
conditions for a new pathway must be met (in our example, the oxygen concentration must have crossed 
the threshold), then a time equal to the lag period must elapse before the switch actually occurs. If the 
conditions change such that a switch is not appropriate, the request is cancelled and the process restarts. 
 
 



XIX Movies 
Movies S1-S8: These movies illustrate biofilm growth without cost for fast switching. 
 
Movie S1: Growth under aerobic conditions. 
Movie S2: Growth under anaerobic conditions. 
Movie S3: Growth under anaerobic conditions interrupted by an oxygen pulse every 32 hours. 
Movie S4: Growth under anaerobic conditions interrupted by an oxygen pulse every 16 hours. 
Movie S5: Growth under anaerobic conditions interrupted by an oxygen pulse every 8 hours. 
Movie S6: Growth under anaerobic conditions interrupted by an oxygen pulse every 4 hours. 
Movie S7: Growth under anaerobic conditions interrupted by an oxygen pulse every 2 hours. 
Movie S8: Growth under anaerobic conditions interrupted by randomly-occurring oxygen pulses. 
 
Movies S9-S16: These movies illustrate biofilm growth when there is a cost for fast switching. 
 
Movie S9: Growth under aerobic conditions. 
Movie S10: Growth under anaerobic conditions. 
Movie S11: Growth under anaerobic conditions interrupted by an oxygen pulse every 32 hours. 
Movie S12: Growth under anaerobic conditions interrupted by an oxygen pulse every 16 hours. 
Movie S13: Growth under anaerobic conditions interrupted by an oxygen pulse every 8 hours. 
Movie S14: Growth under anaerobic conditions interrupted by an oxygen pulse every 4 hours. 
Movie S15: Growth under anaerobic conditions interrupted by an oxygen pulse every 2 hours. 
Movie S16: Growth under anaerobic conditions interrupted by randomly-occurring oxygen pulses. 
 
Movie S17: This movie illustrates a 3D simulation of biofilm growth under anaerobic conditions 
interrupted by an oxygen pulse every 4 hours when there is a cost for fast switching. 


