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Summary

Individual-based modelling of biofilms accounts for
the fact that individual organisms of the same species
may well be in a different physiological state as a
result of environmental gradients, lag times in
responding to change, or noise in gene expression,
which we have become increasingly aware of with the
advent of single-cell microbiology. But progress in
developing and using individual-based modelling has
been hampered by different groups writing their own
code and the lack of an available standard model. We
therefore set out to merge most features of previous
models and incorporate various improvements in
order to provide a common basis for further develop-
ments. Four improvements stand out: the biofilm
pressure field allows for shrinking or consolidating
biofilms; the continuous-in-time extracellular poly-
meric substances excretion leads to more realistic
fluid behaviour of the extracellular matrix, avoiding

artefacts; the stochastic chemostat mode allows
comparison of spatially uniform and heterogeneous
systems; and the separation of growth kinetics from
the individual cell allows condition-dependent switch-
ing of metabolism. As an illustration of the model’s
use, we used the latter feature to study how environ-
mentally fluctuating oxygen availability affects the
diversity and composition of a community of denitri-
fying bacteria that induce the denitrification pathway
under anoxic or low oxygen conditions. We tested the
hypothesis that the existence of these diverse strat-
egies of denitrification can be explained solely by
assuming that faster response incurs higher costs.
We found that if the ability to switch meta-
bolic pathways quickly incurs no costs the fastest
responder is always the best. However, if there is a
trade-off where faster switching incurs higher costs,
then there is a strategy with optimal response time for
any frequency of environmental fluctuations, sug-
gesting that different types of denitrifying strategies
win in different environments. In a single environ-
ment, biodiversity of denitrifiers is higher in biofilms
than chemostats, higher with than without costs and
higher at intermediate frequency of change. The
highly modular nature of the new computational
model made this case study straightforward to imple-
ment, and reflects the sort of novel studies that can
easily be executed with the new model.

Introduction

Surfaces in most environments are rapidly colonized by
bacteria that form biofilms: aggregates of cells and abiotic
particulates within an organic polymeric matrix of micro-
bial origin (Characklis and Marshall, 1990). A vast array of
observational techniques has become available to study
the microbial, chemical and physical properties of biofilms
at increasingly refined spatial and temporal resolution
(Lawrence et al., 1991; Bishop and Yu, 1999; Heydorn
et al., 2000; Xavier et al., 2003). These tools indicate that
biofilms are highly structured systems, with an organiza-
tion, function, shape and composition that are strongly
related to the applied environmental conditions (Watnick
and Kolter, 2000; Stoodley et al., 2002).

These observational advances have been matched
by a refinement in mathematical or computational
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descriptions of biofilms (Hellweger and Bucci, 2008).
Computational biofilm models must jointly consider the
fast processes affecting solutes (reaction and transport
by diffusion or convection) and the slower processes
affecting bacterial mass (growth and division, transport
within the biofilm, detachment or erosion at the biofilm
surface, and attachment to the surface). These pro-
cesses obey mass conservation and for a continuum
space are typically written as partial differential equations
(PDEs), which can be solved using standard numerical
methods. Biofilm models initially represented biomass as
a continuum, based on population-averaged behaviour of
different functional groups. Biofilm models have since
progressed from simpler steady-state one-dimensional
(1D) models to more complex time-dependent 1D
models (Wanner and Gujer, 1986; Wanner and Reichert,
1996), with further expansion to two- and three-
dimensional (2D and 3D) models (Dockery and Klapper,
2001; Eberl et al., 2001; Laspidou and Rittmann, 2004a;
Wanner et al., 2006; Alpkvist and Klapper, 2007b; Duddu
et al., 2009; Merkey et al., 2009). It has been observed,
though, that locally constrained environments may cause
individual or localized behaviours to vary significantly
from population-averaged behaviour (Hellweger and
Bucci, 2008; Stewart and Franklin, 2008). In addition,
within the high microbial density of a biofilm there exists
a significant diversity within functional groups that is
potentially exacerbated by the large solute gradients
common to such systems. This diversity causes very
localized dominance or colocalization of specific species
(Picioreanu et al., 2004b; Batstone et al., 2006; Matsu-
moto et al., 2007a; Downing and Nerenberg, 2008), and
allows even minority species to survive (Boles et al.,
2004); such local observations of biofilm composition are
not adequately described or predicted by population-
averaged models. A wide interest to develop alternative
approaches that capture these cell-level and micro-scale
differences, as well as a desire to understand how indi-
vidual processes, interactions and variability affect the
macroscopic structure of biofilms, has led to the devel-
opment of individual-based models (IbMs) for microbial
biofilms.

In an IbM individuals or agents are modelled explicitly,
with the higher-level population behaviour emerging from
their low-level interactions. In IbMs, individuals are unique
and discrete entities that differ in one or more properties
such as position, biomass composition and metabolic
behaviour (Hellweger and Bucci, 2008). The first true IbM
for microbial biofilms (BacSim) was introduced and sub-
sequently improved by Kreft and colleagues (1998; 2001).
Further work added extracellular polymeric substances
(EPS) to the model (Kreft and Wimpenny, 2001), with EPS
formation stoichiometrically coupled to growth; formed
EPS was bound first to the bacterial agent, but could then

be excreted as a separate agent that would subsequently
engage in shoving along with the bacterial agents. An
alternative method to treat EPS was introduced by Alp-
kvist and colleagues (2006), who used a continuum rep-
resentation of EPS to capture the incompressible, viscous
fluid nature of EPS (Klapper et al., 2002), combined with
an IbM of microbial cells. It has been found that the
inclusion of EPS, by either method, has a large effect on
the dynamics of biofilm growth. Xavier et al. previously
made important improvements to the IbM approach by
introducing a more advanced detachment method and by
allowing each agent to contain multiple components (e.g.
active and inactive biomass, storage polymers, poly-
hydroxy-alkanoates, glycogen), each of which could
undergo various specified bioconversions (Xavier et al.,
2005a,b). IbMs have been used also to model biofilms
using individual agents to represent not individual cells
but rather clusters of cells of the same type (Picioreanu
et al., 2004a).

Outcomes emerging from these IbMs have predicted
several structural features of microbial biofilms that seem
to match experimental observations: the predominantly
clonal growth of microbes in biofilms (multiplication of
immobilized cells leads to clusters of isogenic cells or
clonal microcolonies) (Kreft et al., 2001); the shape and
location of microcolonies of interacting community
members (Picioreanu et al., 2004b; Alpkvist et al., 2006;
Batstone et al., 2006); and the temporal consolidation of
biofilms with depth (Alpkvist et al., 2006). IbMs have also
been used to test several evolutionary and ecological
hypotheses: Kreft (2004) explored how elementary altru-
istic behaviour (increasing economy of resource use
[growth yield] at the cost of growth rate) can emerge and
be maintained in biofilms but not in suspended growth
cultures, while Xavier and Foster (2007) looked at the
strong evolutionary advantages that EPS producers have
in mixed genotype biofilms. In addition, IbMs have con-
firmed and provided several mechanistic explanations for
phenomena such as biofilm fingering (Kreft et al., 2001),
the surprising location of initial biofilm growth in square-
channel monolith reactors (Ebrahimi et al., 2005), the
long-term survival of slow growers in deeper portions
of a biofilm (Picioreanu et al., 2004a), and the effect of
microbial motility on biofilm morphology (Picioreanu et al.,
2007; Mabrouk et al., 2010). IbMs have also been
successfully applied to describe and optimize various
biofilm and granular reactor applications (Picioreanu
et al., 2005; Xavier et al., 2005a; 2007; Batstone et al.,
2006; Matsumoto et al., 2007a; Matsumoto et al., 2010),
and biofilm control strategies based on the disruption of
the EPS matrix have also been investigated (Xavier et al.,
2005c).

In spite of the general maturity of biofilm modelling
approaches, IbMs have, so far, not seen general use like
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the 1D continuum model by Wanner and Gujer (1986),
which is widely available through the Aquasim software
package (Reichert, 1994). In order to address this gap, we
present here a new modelling platform specifically dedi-
cated to individual-based modelling of microbial commu-
nities, meant to improve accessibility to non-programmers
and to provide a backbone for future developments pro-
posed by any interested contributor. iDynoMiCS (standing
for individual-based Dynamics of Microbial Communities
Simulator) is built on the foundation of earlier models
(Kreft et al., 2001; Kreft and Wimpenny, 2001; Picioreanu
et al., 2004b; Xavier et al., 2005a,b), and is open-source
software developed under a CeCILL license (http://www.
cecill.info/index.en.html). Details about how to obtain
iDynoMiCS from the website http://www.idynomics.org
are contained in the Supporting information. The iDynoM-
iCS model also includes improvements to the IbM
approach, which we describe in depth in this manuscript.

Similarly to former individual-based biofilm models, iDy-
noMiCS is meant to be used to answer microbial ecology
questions by the use of simulations resolved at the micro-
organism or microcolony scale; it also exhibits interactions
between global dynamics (e.g. concentrations in the free
liquid phase) and individual heterogeneity or spatial struc-
tures. Also like previous IbMs of biofilms, iDynoMiCS may
not necessarily be the right tool to answer other questions
(Wanner et al., 2006), such as predicting colonization
resistance in the gut microbiota as a whole (Freter et al.,
1983) or studying the efficacy of particular wastewater
reactor configurations (Reichert, 1994). iDynoMiCS is
also, like other IbMs, more complex and computationally
demanding than simpler biofilm models (Reichert, 1994;
Rittmann and McCarty, 2001), and this cost should be
considered as one evaluates whether to use iDynoMiCS.
In addition, many features important to particular systems
(e.g. modelling electric fields or chemical reactions occur-
ring separately from bacterial agents) are not yet included
in iDynoMiCS, but iDynoMiCS was designed to allow such
capabilities to be easily added.

As a whole though, the improvements to IbMs intro-
duced with iDynoMiCS allow new types of studies to be
made, and allow such studies to be made by non-
programmers much more easily. To illustrate how the new
features of the iDynoMiCS model extend the range of
problems addressable using an IbM, we will use the
model to study denitrifying communities exposed to
varying conditions. Many studies have shown that some
denitrifiers switch on denitrification pathways rapidly once
oxygen becomes depleted, while others switch on only
slowly, and others still do not switch off at all under
aerobic conditions (Robertson and Kuenen, 1984; Körner
and Zumft, 1989; Kucera et al., 1990; Ye et al., 1995;
Baumann et al., 1996; Otte et al., 1996). Here we use
iDynoMiCS to show that the observed variety of denitrify-

ing strategies can be explained by assuming that the cost
of switching between aerobic and anaerobic growth
modes increases with the rate of switching.

In a companion paper (Merkey et al., 2011), we use an
extension of the basic model to explore the spread of
mobile genetic elements in biofilms.

Model description

In recognition of the difficulties posed in describing and
reviewing IbMs, Grimm et al. proposed the Overview,
Design concepts and Details (ODD) format for describing
IbMs to ensure consistently structured, complete and
comparable descriptions (Grimm et al., 2006). We there-
fore follow the ODD concept. Further details are available
in the Supporting information for some parts of the model
description.

Purpose

The purpose of iDynoMiCS is to simulate the growth of
populations and communities of individual microbes
(small unicellular organisms such as bacteria, archaea
and protists) that compete for space and resources in
biofilms immersed in aquatic environments. With iDynoM-
iCS we seek to understand how individual microbial
dynamics lead to emergent population- or biofilm-level
properties and behaviours. iDynoMiCS also allows simu-
lation of a well-mixed unstructured chemostat environ-
ment to evaluate the effect of spatial structure on growth
dynamics.

Scale and state variables

The fundamental agent in iDynoMiCS is the individual
microbe, characterized by state variables including: loca-
tion, size, density, relative composition (active biomass,
inert biomass, EPS), species type, catalysed reactions
and associated rate and stoichiometric coefficients, and
genealogy. iDynoMiCS also includes particulate EPS
agents that are produced by microbes through an excre-
tion process and characterized by their species of origin,
position, size and density. Individual agents interact
directly mechanically through shoving in the competition
for space. While the agents comprise the lowest hierar-
chical level in the iDynoMiCS structure, they are the enti-
ties that mediate, through growth and related processes,
the dynamics of the entire system.

Agents that share certain characteristics or parameters
(such as reaction types) are grouped into species, but this
grouping is purely organizational. The agent population as
a whole, though, is treated as a collective (see Design
concepts) to ensure that all agents take part in the purely
mechanical interactions leading to biomass spreading
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and detachment. The spatial extent of this cluster of
agents defines the region that is considered to be part of
the biofilm structure, with the region outside the biofilm
considered to be liquid.

Computational constraints limit simulations to a compu-
tational domain that is a small subset of the macro-scale
world, currently on the order of several hundred to several
thousand microns in extent in each spatial dimension. All
simulated agents must reside somewhere within the com-
putational domain, and by default are restricted to the
biofilm (a region that is a subset of the computational
domain). Within the domain, solutes are represented by
concentration fields that vary in space and time because
of mass transport (diffusion and advection) dynamics and
the reactions by which they are affected. Included in the
model can be a representation of the well-mixed macro-
scale liquid volume within which the biofilm community is
immersed (e.g. to simulate a biofilm in an ideally mixed
reactor), called the bulk compartment. The computational
domain is often connected to at least one such ideally
mixed compartment. The bulk compartment may be
affected by reactions and mass transfer exchange with
the biofilm and with the external environment through
hydraulics, and bulk solute concentrations may thereby
vary in time. Physical interaction of the bulk liquid volume
with the biofilm structure in the form of shear or erosion
forces will lead to detachment of microbes from the
biofilm, and this process is included as well.

In addition to the solute dynamics of the bulk, it is
possible to simulate the fate of free microorganisms and
hence to study a well-mixed, unstructured chemostat. For
this purpose, a stochastic chemostat is defined by popu-
lating a homogeneous spatial domain with microorgan-
isms. In chemostat simulations, most spatial properties
of agents, solutes and the computational domain are
excluded: agent locations are ignored; solute concentra-
tions do not vary spatially in the domain and are fixed at
the current bulk compartment value; all agents experience
the same bulk concentrations for solutes; and the only
physical interaction of agents with the world is through a

stochastic dilution process that removes a certain number
of randomly chosen discrete cells from the system during
each timestep.

The overall properties of the computational domain, the
bulk compartment(s) and the erosion forces are grouped
into a ‘world’ descriptor, which emphasizes the interplay
between the micro- and macro-scale environments cap-
tured by iDynoMiCS and other IbMs.

Process overview and scheduling

During a single global timestep, the dynamics of the
solute concentration fields, the bulk compartment and the
agents are applied independently, although the dynamics
of each depend on the current state of the others
(Algorithm 1). Addressing each class of dynamics sepa-
rately is possible because they all operate on different
timescales (Picioreanu et al., 1999). In addition, the
dynamics of the agents are further broken down into
smaller timesteps to account for the varied processes
affecting agent growth, division and movement, as well as
any additional processes an agent may carry out. Once
these steps are completed, erosion effects are applied to
the biofilm structure as a whole, the global time is incre-
mented, and the next timestep taken.

Design concepts

The iDynoMiCS structure considers several important
ecological concepts in model design and in the interpre-
tation of model outputs.

Emergence. The biofilm structure and composition
emerge from the activity of individual agents, whose
behaviours depend on the solute concentration fields, the
behaviour of neighbouring agents, and the erosion or
shear forces acting on the biofilm.

Adaptation. Unlike previous biofilm models, in iDynoM-
iCS biochemical growth reactions are uncoupled from

Algorithm 1. Pseudo-code describing one global timestep iteration of the individual-based simulator.

1 Solve solute mass balances in the computational domain for the given agent distribution and bulk solute concentrations; this sets the solute
concentration fields

2 Update bulk concentrations based on new solute concentration fields
3 While agent timestep < global timestep

a. Perform any actions specific to a particular species or agent type
b. Compute growth, decay and division or death of agents to update agent size and mass, and add or remove agents if needed
c. Compute pressure field and apply pressure-driven movements to agents
d. Apply shoving and spring relaxation to update agent locations

4 Apply detachment of agents by erosion and remove disconnected parts of the biofilm
5 Update global timestep

When a chemostat is being simulated, step 1 is simplified due to the spatial homogeneity but the time resolution is increased, steps 2, 3c, and 3d
are skipped, and step 4 is replaced by stochastic agent dilution.
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species, allowing individuals of a species to carry out
different sets of reactions. This makes it possible to simu-
late agents that adapt their metabolic reactions to envi-
ronmental conditions.

Fitness. This is an emergent property included implicitly
as a function of an agent’s growth properties.

Prediction. iDynoMiCS is able to predict biofilm structure
and composition, as well as time-varying solute concen-
trations in the bulk compartment and in the biofilm. While
the abstract agents in iDynoMiCS are not meant to predict
the behaviour of individual real-life microbial agents, the
simulation as a whole is able to predict the response of a
bacterial population to its environment.

Sensing. Individual agents grow based on implicit
sensing of local solute concentrations and sensing of the
environment can lead to changes in behaviour and
metabolism.

Interaction. The agents, bulk compartment and solute
concentration state variables interact with one another
through reactions, and agents also interact mechanically
with one another by shoving for space during growth and
EPS excretion.

Stochasticity. The stochastic processes in iDynoMiCS
include: (i) the initial agent locations are randomly chosen
within a particular rectangular region, unless the user
specifies a list of agents with initial positions, (ii) the initial
agent masses are randomly chosen around an average
value, unless specified directly by the user, (iii) the cell
division threshold volume is chosen randomly around an
average division size, (iv) the cell death threshold volume
is chosen randomly around an average death size, (v)
upon cell division, daughter cell sizes are chosen stochas-
tically around equally sized daughter cells, (vi) also upon
cell division, daughter cells are positioned with zero
overlap and equidistant from the mother cell’s centre, but
are oriented in a random direction (Fig. S2), (vii) EPS
excretion in the form of new particles occurs in a randomly
chosen direction and (viii) the order in which agents are
updated during a single global timestep is made random
during each step. For investigating the importance of sto-
chasticity, processes (i) to (v) can be made deterministic,
and time series of population densities in simulations with
stochasticity at a minimum are typically indistinguishable.
For processes (vi) and (vii) there is no unique determin-
istic solution.

Collectives. Only the biofilm community as a whole is
tracked explicitly, in order to allow any processes that
depend on the biofilm surface, such as erosion and

detachment, to be treated correctly. All agents are orga-
nized into lists to ensure each agent is processed exactly
once per timestep. Individuals are also grouped by meta-
bolic type (guilds) for calculation of reaction rates and
solute fluxes or grouped according to processes they
have in common, but this is only for efficiency and does
not imbue these organizational units with any additional
properties. In addition, guild membership is not perma-
nent and can be modified at any moment for any indi-
vidual according to its own strategy and perceptions.

Observation. At specified intervals iDynoMiCS stores the
solute concentration fields and the state of each agent
(species, location, masses of all compartments, composi-
tion, genealogy, growth rate, etc.). The latter information
can also be read in as initial condition in order to start a
new simulation based on a previous run.

Initialization

Initialization in iDynoMiCS is under user control. The size
and boundaries of the computational domain and the
dynamics of the bulk compartment should be based on
the physical system being studied. The user must specify
species types and reactions included in the model. The
agent initial conditions include setting initial values for
agent state variables, and setting the initial number of and
inoculation region for the agents. Agents may be defined
stochastically within conditions specified by the user, or
precise initial conditions can be specified with an input file.
Solute concentration fields do not need to be specified
because the steady-state solute concentrations can be
calculated from the boundary conditions and distribution
of agents with their reaction rates.

Input

The inputs to iDynoMiCS, meaning the imposed dynamics
corresponding to the real-world system being studied,
consist of defining the dynamics of the bulk compartment
(constant or time-varying, and for the latter case including
influent concentrations and dilution rates), specifying the
erosion strength (a function of macro-scale environmental
stresses), possibly imposing a maximum biofilm thick-
ness, and setting the mass transfer resistance to the
biofilm by setting the thickness of the diffusion boundary
layer.

Submodels

Here we describe in detail each of the components of
iDynoMiCS. For many submodels further details are avail-
able in the Supporting information.
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The computational domain. The computational domain is
an evenly spaced rectilinear grid described by its dimen-
sionality (2D or 3D), its size, its geometry and the behav-
iour at its boundaries. Within the computational domain
several regions are defined, as illustrated in Fig. 1: the
support is the surface to which agents can adhere; the
bulk compartment (Region III) represents the well-mixed
bulk liquid within which the computational domain is
immersed, and within this region solute concentrations
are fixed to their bulk values; the biofilm matrix (Region I)
is composed of microbial cells embedded in a viscous
medium produced by the microbes (extracellular poly-
meric substances, EPS); and the diffusion boundary layer
(Region II) is a purely diffusive liquid compartment at the
interface between the bulk compartment and the biofilm.
In Regions I and II, the solute concentration fields vary in
space because of diffusion and reaction dynamics, and,
because these processes are much faster compared with
the timescale of agent growth, solute concentrations are
assumed at all times to be in pseudo steady-state com-
pared with agent dynamics (Picioreanu et al., 1999). In
Region III, the solute concentration fields are kept equal to
the concentration in the world-level bulk compartment,
and, through diffusive interactions with Regions I and II,
Region III connects the micro-scale agents with the
macro-scale bulk compartment. The conditions at the
domain boundaries (4 in 2D and 6 in 3D) affect the behav-
iour of the model for the agents (Fig. S1) and the solutes,
and, although iDynoMiCS may be extended to use any
boundary type, the current implementation includes a
default set of boundary types: no-flux, constant or variable
concentration, solute-permeable membrane, and periodic
boundaries (see Supporting information).

Solute species dynamics. Solute dynamics in the biofilm
and boundary layer are affected by two processes
(Fickian diffusion and agent-mediated reactions), and, as
in previous models [see the timescale discussion in

Picioreanu et al. (2001)], we assume that the solute fields
are in pseudo steady-state with respect to biomass
growth. Therefore at each step we solve the following
elliptic PDE:

∇ ⋅ ( ) ⋅∇ ( )( ) + ( ) =D x S x r xS S

� � �
0. (III-1)

Here
�
x is the position vector, D xS

�
( ) is the local solute

diffusion coefficient, r xS

�
( ) is the local solute reaction

rate, and � can be read as the gradient of a field (i.e. is

the vector gradient operator ∇ = + +ˆ ˆ ˆi
x

j
y

k
z

∂
∂

∂
∂

∂
∂

). The

diffusion coefficient and reaction rates in this equation
take different forms for different regions: reaction rates in
the biomass-free boundary layer are zero, and the effec-
tive diffusion coefficient is decreased within the biofilm
compared with the liquid value (the effective diffusivity is
typically 0.8 times the coefficient in water) in order to
account for the increased mass transfer resistance (Ritt-
mann and Manem, 1992; Stewart, 2003). The solute con-
centration fields described by the elliptic PDE in (Eq. III-1)
are solved using an efficient multigrid method (Brandt,
1977; Picioreanu et al., 2004a; Xavier et al., 2005a), and
the flexible, modular structure of iDynoMiCS facilitates
implementation of additional solvers.

A dynamic bulk compartment varies in time due to
inflow, outflow and reactions. Ignoring any reactions
occurring in the bulk compartment and including only
reactions in the biofilm, we may write a mass balance on
the bulk compartment:

dS
dt

D S S RB
In B S R= ⋅ −( ) + ⋅σ . (III-2)

Here SB is the solute concentration in the bulk compart-
ment, D the dilution rate of the bulk compartment, SIn the
influent solute concentration, sR the specific surface area
of the bulk compartment (total area of carrier surface in
the bulk divided by bulk compartment volume) and RS the
net reaction rate per carrier area. For modelling systems

Fig. 1. The computational domain including
the support as an external boundary. Region I
represents the biofilm, Region II the diffusion
boundary layer and Region III the well-mixed
bulk compartment. While the choice of the
orientation of the axes x, y and z is not
conventional, it preserves the existence and
location of x and y axes when reducing the
model from 3D to 2D.
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where oxygen (or solute) concentrations are not affected
by the liquid dilution rate, the iDynoMiCS dynamic bulk
routines also allow for setting constant concentrations for
single solutes.

Agent representation as particles. Agents are repre-
sented by incompressible (hard) spheres (in 3D simula-
tions) or cylinders (in 2D simulations). In the default
implementation two types of agents are included: bacte-
rial agents and free EPS particles. However, because
microbial systems may involve interactions not only
between bacterial cells, but also with archaea, protozoa,
algae or fungi, iDynoMiCS allows for the introduction of
non-bacterial agents. By default, iDynoMiCS assumes a
strict correspondence between individual agent and cell.
All agents are characterized by particular state variables
(see Scale and state variables). In addition, microbial
agents but not EPS particles can be structured with com-
partments (by default active biomass, inert biomass, cap-
sular or bound EPS). The agent structure includes an
inner ‘cell’ consisting of all intracellular components
(active and inactive biomass, storage compounds, etc.)
along with an outer layer that consists of the capsular
EPS. Each compartment requires a density ri, and the
mass mj and volume Vj

total of an individual j are calculated
making use of the distinction between the cell and capsu-
lar EPS:

m m m

V V V
m

j i j
i cell

i j
i capsule

j
total

j
cell

j
capsule i j

= +

= + =

∈ ∈
∑ ∑, ,

,

ρρ ρii cell

i j

ii capsule

m

∈ ∈
∑ ∑+ , .

(III-3)

The radii of the inner cell and entire agent are calculated
using the volumes Vj

cell and Vj
total respectively.

During a single global timestep, all agents in a simula-
tion are updated in a random order, with the order
changed for each step; this randomization removes any
bias that may arise because of the order of updating. An
agent update may affect agent properties such as size,
composition or position, along with any properties specific
to a particular agent type (e.g. enabling or disabling a
reaction in response to local conditions). Even though
some agent properties may not change during an update,
the simulator does not skip any agents during the update
step.

Cellular growth. In contrast to previous biofilm IbMs,
agent-mediated biochemical reactions here are defined
independently of the species, so that an individual agent
may carry out a different suite of reactions than other
individuals of the same species. The metabolic switching
case study described in Case study: metabolic switching
for denitrification in fluctuating environments is an
example where this modelling capability is useful. Reac-

tion descriptions are based on the commonly used matrix
format (Wanner and Gujer, 1986; Henze, 2000; Xavier
et al., 2005a). Each reaction has an overall rate expres-
sion ri that is used to describe how a reaction affects
solute and particulate components by means of a yield
coefficient Yi; the net reaction rate for a component j is
then found by summing all the reactions by which it is
affected:

r Y rj Net i j i

i
involved
reactions

, ,= ⋅
∈

∑ .
(III-4)

Reactions respect mass conservation principles, and
negative stoichiometric coefficients indicate consumption
while positive coefficients indicate production. The reac-
tion rate ri is usually defined by the product of different
kinetic factors representing saturation and/or inhibition by
a compound (e.g. Monod/Michaelis-Menten or Haldane
kinetics). The reaction rate is also proportional to the
mass of the catalysing compartment, so that an individual
agent may catalyse several reactions simultaneously,
each by a specific compartment.

Cell division and death. Agents grow and shrink because
of their metabolism, but agent sizes are restricted to a
particular window: cell division or death occurs instanta-
neously when an agent reaches a user-defined threshold
radius. To avoid artificial synchronization of agent divi-
sions, the decision to divide or die does not occur exactly
at the threshold; instead the decisions are based on test
radii taken from Gaussian distributions of the user-
specified threshold radii using Coefficients of Variation of,
by default, 10%, with the distributions cut off outside two
standard deviations.

During division the agent’s mass is split more or less
evenly between its daughters, chosen via a Gaussian
distribution that by default gives equal volumes for the
daughter cells with a 10% Coefficient of Variation and cut
off outside two standard deviations. The orientation of the
division direction is randomly chosen and daughter
agents are positioned with zero overlap (Fig. S3), with any
neighbour overlap addressed through shoving (see
Mechanical interactions).

Agent death is included as a way to remove small,
inactive agents from the simulation. Agents that shrink
below a death-size threshold are removed from the
simulation, and so long as the death size is chosen to
be sufficiently small (e.g. on the order of 0.1 mm) the
impact on overall simulation mass balance is negligible.
For simulations where a small death radius is not appro-
priate, the mass loss due to removal of larger agents
would no longer be insignificant, and in that case an
alternative to this simple approach would be to include a
lysis reaction that converts dying cell mass into soluble
COD.
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EPS excretion. The EPS matrix surrounding cells in the
biofilm has been previously represented via both particu-
late and continuum methods, and iDynoMiCS introduces
two improvements to the particulate representation of
EPS proposed in Kreft and Wimpenny (2001). First, EPS
accumulated in an extracellular compartment by EPS-
producing agents is continuously transferred to the envi-
ronment (i.e. during each timestep), rather than being
released only during discrete events (i.e. only during
some timesteps). As illustrated in Fig. 2, during an agent
step the agent’s neighbourhood is scanned to find all EPS
particles of the same type within a certain radius, and the
released EPS is distributed evenly between them; if no
such agents are found, a new EPS particle is created. A
consequence of this approach is the decoupling of the
kinetics of production and transfer of EPS, allowing
release of matrix EPS even in the absence of microbial
growth. The second improvement over previous particu-
late EPS treatments is in the size of EPS particulates
used by iDynoMiCS. Following smoothed particle hydro-
dynamic methods (Gingold and Monaghan, 1977), we
impose smaller radii for EPS particulates, an approach
that appears to recreate a viscous fluidic biofilm matrix
(Klapper et al., 2002). To our knowledge no previous
model has used small EPS spheres as an alternative to
the continuum treatment in Alpkvist and colleagues
(2006). Representing EPS as particles allows tracking of
the origin of the EPS particles and to simulate different
types of matrix compounds, such as DNA or proteins that
are possibly produced by different species.

Mechanical interactions. Agent growth, division, shrink-
ing and death are the source of agent movement
within the biofilm. iDynoMiCS combines a finer- with a
coarser-scale mechanism for capturing these sources
of movement and for moving agents to account for
these processes: agent shoving, and biomass growth
pressure.

At the local level, agent overlaps are avoided through a
relaxation algorithm that determines the steady-state
agent locations with the minimal number of overlaps
(Algorithm S1). Any pair-wise agent overlap resulting from
agent growth or division is resolved by moving each agent
apart by half the overlap distance (Fig. S4); to avoid any
bias, the algorithm first sums all movement vectors due to
the current configuration and then applies all agent move-
ments at once, continuing the cycle until the number of
agents still moving is negligible (at the typical parameter
setting, less than 5% of the total number of agents).
Previous IbMs of biofilms have used such shoving algo-
rithms effectively to model growing biofilms (Kreft et al.,
2001). Further details of the shoving algorithm are pro-
vided in the Supporting information.

At the global level, inclusion of a biomass growth pres-
sure addresses sources of agent movement that are not
captured through agent shoving, such as biomass con-
solidation as a result of decay, cell lysis or hydrolysis of
EPS (either bound or free) deep in a biofilm (Laspidou and
Rittmann, 2004b). IbMs that include only agent shoving
work well for modelling expanding biofilms, but will not
capture the negative pressure of consolidation that acts to
pull biomass closer together, thereby shrinking the biofilm.
Biofilm-scale advective motion of biomass may be
addressed by applying a mass balance on each grid
element that takes account of the effects of growth and
decay of biomass as well as this advective motion of
biomass. These growth and decay processes contribute
to a biomass pressure P, as defined previously by Klapper
and colleagues (2002) and Alpkvist and colleagues
(2006), and this pressure is alleviated through the advec-
tive movement of biomass. Advection within the biofilm is
described by Darcy’s law, where the advective velocity�
u is given by:

�
u P= − ∇λ , with l [units (m3 s kg-1)] a

material property called the Darcy parameter that is
inversely proportional to the material’s dynamic viscosity.
In practice, the Darcy parameter ends up cancelling out

Fig. 2. EPS capsule excretion via continuous
transfer to neighbouring EPS particles. When
EPS is excreted by an agent, the excreted
EPS is shared among any neighbouring EPS
agents of the same type. In the case when no
such agents are present, a new EPS particle
will be created.
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during the computation of the resulting biomass velocity
(Alpkvist et al., 2006), and for this reason l is often set to 1
to simplify computation. Following Alpkvist and colleagues
(2006), application of mass conservation for each grid
element in the biofilm yields the following elliptic equation
for the pressure P :

∇ ⋅ − ∇( ) + =
∈
∑λ

ρ
P

rj

jj

0
elements

(III-5)

where rj and rj are the mass production rate and density of
agent j, respectively, and the ratio gives the rate of volume
production. The boundary conditions for calculating the
pressure field P include a no-flux boundary at the substra-
tum and any periodicity in the lateral directions following
the solutes, along with an imposed pressure P = 0 outside
the biofilm. These boundary conditions allow for calcula-
tion of the pressure P via (Eq. III-5), and the local advec-
tive velocity may be computed by application of Darcy’s
law. The resulting local advective velocity is applied to
each agent by adding it to other movement terms caused
by shoving, cell division and EPS particle excretion. In the
case of high pressure gradients, a smaller timestep will be
imposed on agent movement in order to maintain numeri-
cal stability.

Because growth of cells leads to an increase in the local
pressure as well as to overlap of neighbours, the two
mechanisms are consistent. Therefore, the biomass pres-
sure is also used to move agents as a result of biomass
growth because it tends to be more efficient than shoving
algorithms for larger-scale redistribution of biomass
(Dockery and Klapper, 2001; Alpkvist et al., 2006).
However, although the pressure field can capture move-
ment as a result of growth, it cannot replace agent
shoving because the biomass pressure field is too coarse
to resolve overlaps between neighbours.

During a simulation, the biomass pressure computation
and resulting agent movement are carried out before agent
shoving so that the latter may address any overlap intro-
duced during the pressure movement step (Algorithm 1).

Erosion. Some previous models have used the Navier-
Stokes equations and visco-elastic properties of biofilms
to model shear and erosion of a biofilm surface mecha-
nistically (Picioreanu et al., 2001; Alpkvist and Klapper,
2007a; Duddu et al., 2009). However, this treatment intro-
duces computational complexities, necessitates smaller
timescales (on the order of seconds), and relies on
parameters that are difficult to measure. iDynoMiCS is
meant to model a longer timescale and consequently
uses a more global erosion effect: as in Xavier and
colleagues (2005b), an erosion speed function, FDet, is
defined at each point on the biofilm–liquid interface and is
used to remove biomass continuously at each timestep
(Fig. S5). Erosion may sometimes cause separation of

portions of the biofilm from the substratum; these
detached portions are found by a process of connected
volume filtration and removed from the computational
domain (Xavier et al., 2005b). Further details of this
process are available in the Supporting information.

Individual-based chemostat. iDynoMiCS is also suitable
for the simulation of bacterial growth and their interactions
in an unstructured environment, such as a chemostat.
When simulating this type of environment, we ignore the
spatial position of the cells and skip position-related steps
during agent updates (Algorithm 1). The concentrations of
the solutes in a chemostat are spatially invariant, and are
simply the balance between the processes of inflow,
outflow and consumption as a result of bacterial growth.
Solute dynamics are calculated using an ordinary differ-
ential equation (ODE) solver adapted from linearly implicit
formulas for stiff systems based on Rosenbrock methods
(Gear, 1971; Shampine, 1982; Shampine and Reichelt,
1997). With an individual-based chemostat, dilution of
cells is stochastic, meaning that the number of agents to
be washed out per timestep is computed from the set
dilution rate, but that the individuals to be washed out are
randomly chosen from all agents, including EPS. In addi-
tion, individuals might be in different physiological states
despite the uniform environment [e.g. because of noise in
gene expression (Kaern et al., 2005) or specific cell mor-
phologies (Balagaddé et al., 2005)], and it is possible to
simulate and track direct interactions between individuals.

Results and discussion

Validation of iDynoMiCS against benchmark
problem BM3

iDynoMiCS has been validated against the 2D multi-
species biofilm benchmark BM3 proposed by the Interna-
tional Water Association task group on biofilm modelling
(Noguera and Picioreanu, 2004; Rittmann et al., 2004;
Wanner et al., 2006). In most cases there is good agree-
ment of the output of iDynoMiCS with various previous
models (Table S5) (Noguera and Picioreanu, 2004).
However, iDynoMiCS results are significantly different
from previous models in one of the BM3 comparison
cases, a case that was particularly sensitive to model
peculiarities (Noguera and Picioreanu, 2004). From this
and other validations (data not shown) we have con-
cluded that iDynoMiCS performs as expected. For details
of the BM3 comparison we have to refer the reader to the
Supporting information.

Validation of the individual-based chemostat
against ODE model

We validated the individual-based chemostat submodel
by simulating a multi-species community system based
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on the BM3 benchmark problem. We compared steady-
state biomass and solute concentrations obtained with
iDynoMiCS with the deterministic solution obtained with
an ODE solver implemented in MATLAB (Fig. S6). The
two solutions matched well: the relative error of steady-
state variables was below 2% for all variables, except
when the population was particularly small (fewer than
about 10 individuals in the simulation). This is to be
expected when a population is composed of very few
individuals, as any source of variation (such as the sto-
chastic removal of one individual through dilution) is
amplified merely because there are fewer individuals to
balance out the variation. Note that this is not an artefact
of the simulation, as a population consisting of few indi-
viduals in a microfluidic device or a natural system would
also show such ecological drift. Increasing the system
size, and therefore the number of individuals in the simu-
lation, is one possible means to decrease variations if
they are not desired, albeit at the expense of increased
computation time. Further details of the validation are
available in the Supporting information.

Example of new features in iDynoMiCS 1:
the pressure field

For biofilms undergoing compaction as a result of decay
or starvation processes, the biomass pressure field is a
necessary model addition to allow an IbM to capture this
phenomenon correctly. As an illustration, we constructed
a model based on the BM3 benchmark problem, but
including EPS formation (YEPS = 0.2 g g-1) and with
increased biomass density (200 g l-1 for biomass and
33 g l-1 for EPS). After growing a biofilm for 3 days we
then removed all growth and maintenance reactions from
the simulation and left only EPS hydrolysis (rate
khyd = 0.013 h-1) in order to simulate loss of biomass
leading to compaction of agents. As may be seen in
Fig. 3, the pressure field has a noticeable effect on the
resulting biofilm thickness over 7 days of simulation. The
drop in thickness of the biofilm in the simulation using
pressure proceeds immediately and is linear in time, while
the no-pressure simulation maintains a constant thick-
ness for about 2 days before showing a drop in thickness.
This latter drop has a shallower slope and is not caused
by compaction (as in the case with the pressure field) but
instead by loss of EPS particles: when hydrolysis shrinks
particles too small they are removed from the simulation,
thereby removing some of the biofilm’s outer surface.
Please see the Supporting information for further details
of the pressure field.

Example 2: effects of continuous EPS excretion

To illustrate the benefit of using continuous rather than
discrete EPS excretion, we used the same growth dynam-

ics as in the previous example to simulate growth of a
biofilm containing two species that are identical aside
from the way in which their EPS synthesis and excretion
is described. We then compared simulations for different
values of the maximum EPS fraction parameter, which
controls the maximum percent of an agent’s volume that
may be taken up by EPS before an excretion event is
forced; this parameter does not affect the total amount of
EPS in the biofilm but rather affects how that mass is
distributed. Figure 4 shows that, for larger values of the
EPS fraction parameter, the discrete-style treatment leads
to a larger agent size and therefore a less well-packed
biofilm; this results in an artificial height difference for the
two species. The new continuous-style treatment avoids
this artefact by preventing the bacterial agents from accu-
mulating excess EPS while also removing the discontinui-
ties that result from discrete excretion events.

In addition to alleviating possible artificial packing
or height differences, we contend that a continuous-
excretion treatment better captures the altruistic or spite-
ful effects recently ascribed to EPS production (Xavier
and Foster, 2007; Nadell et al., 2009). Discrete EPS
excretion requires internal EPS build-up before an excre-
tion event, and in the absence of growth the cell will no
longer excrete EPS. In contrast, the continuous-excretion
approach is better suited for studying EPS production as
a public good because continuously excreted EPS is
immediately made public.

Case study: metabolic switching for denitrification
in fluctuating environments

In this case study we illustrate the utility of uncoupling
individual agents from their species’ metabolism so that
individuals can switch metabolism because of external or

Fig. 3. Shrinking of a decaying or starving biofilm. With the new
pressure field, the biofilm contracts (consolidates) without delay
and at an approximately constant rate.
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internal triggers, and apply this to changing electron
acceptor utilization in denitrifying bacteria. The common
approach to implement such a switch mechanism is to
use simple multiplicative inhibition terms such as the
Monod-like term K/(K + S), where the switch occurs based
on local solute concentrations. With this treatment an
agent may switch dominant reactions automatically as
local conditions change, but in the simplest form there is
an instant response to conditions; incorporation of any
physiological lag periods becomes computationally more
difficult. With iDynoMiCS, though, we do not need to rely
on inhibition terms for activating or deactivating reaction
pathways because the agents are able to activate/
deactivate any of their suite of reactions, and in addition
may activate/deactivate pathways based on external or
internal conditions (Fig. S7). This case study illustrates an
application of an externally triggered switch mechanism.
More complete details of the model, results and switch
algorithm are provided in the Supporting information.

We model a heterotrophic population growing in a biore-
actor, such as in wastewater treatment applications. The
heterotroph species are based on organisms that typically
grow aerobically, but that may, via activation or derepres-
sion of appropriate genes, induce a denitrification
pathway and use nitrate as an alternative electron accep-
tor when oxygen is not available or is present in low
concentrations. Examples of such organisms include

Pseudomonas stutzeri, Paracoccus denitrificans, Alcali-
genes faecalis and Pseudomonas aeruginosa (Robertson
and Kuenen, 1984; Körner and Zumft, 1989; Ye et al.,
1995; Baumann et al., 1996; Otte et al. 1996). We make
the following assumptions based on experimental studies.
Anaerobic growth of heterotrophs takes over for local
oxygen concentrations below a threshold of 0.2 mg O2/L
(Ye et al., 1995). After the appearance of suitable condi-
tions, there is a delay of 1–5 h before anaerobic activity
will be fully engaged (Robertson and Kuenen, 1984;
Kucera et al., 1990). The return to aerobic metabolism
occurs instantly when oxygen is present, with anaerobic
activity resuming only when the oxygen concentration has
once again decreased below the threshold value (Robert-
son and Kuenen, 1984).

We consider three heterotrophic species that have iden-
tical growth parameters (Tables 1 and 2), but that have
different denitrification pathway induction lags (1, 3 or
5 h); for simplicity we call these species Lag-1, Lag-3 and
Lag-5 respectively. We also consider induction costs by
comparing two cases: one in which there is an incurred
maintenance cost to have a faster induction rate, and one
in which there is no such cost. The rationale for assuming
rapid induction to be costly is that the ability for faster
adaptation of metabolic pathways would necessitate a
higher rate of turnover of the cellular machinery, mainly
consisting of proteins. In the no-cost case, all three

Fig. 4. Comparison of discrete- and
continuous-style EPS excretion. The blue
agents on the left exhibit discrete-style EPS
excretion, and red agents on the right exhibit
continuous-style EPS excretion. Also shown
are the respective EPS particles (cyan,
discrete-style; pink, continuous-style), with
darker particles representing agents that are
primarily composed of inert biomass. The
continuous-style treatment is not affected by
changes in the maximum EPS fraction
parameter, but the discrete-style treatment
exhibits a different structure when the EPS
fraction of a capsule is allowed to be high.
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species have an identical maintenance rate of 0.0133 h-1,
and in the cases enforcing an increasing cost with
increasing rate of induction, each species has a different
rate (Table 2; see Supporting information for details on
how the rates were obtained).

We inoculated a model biofilm with an even species
distribution and grew it for 10 days under different growth
conditions. The basic parameters common to all cases
are given in Table 3, and we compared growth under the
following conditions: (i) purely aerobic (constant oxygen
concentration of 4 mg l-1 in the bulk compartment), (ii)
purely anoxic (no oxygen in the bulk compartment) and
(iii) anoxic except for regular periodic pulses that spike the
bulk oxygen concentration to 0.5 mg l-1, with bulk com-
partment outflow and consumption by the biofilm returning
the oxygen concentration to zero after roughly 1 h.
Figure 5 and Movies S1–S8 illustrate the effect of oxygen
pulses on bulk compartment concentrations. In the case
of periodic oxygen pulses we simulated pulses occurring
every 2, 4, 8, 16 and 32 h. In all cases the inflow and initial
bulk nitrate concentration was 4 mg-N/L. For the pulsed
oxygen cases the appearance of oxygen deactivates the

anaerobic pathway and allows a brief period of aerobic
growth that lasts until the added oxygen is exhausted;
anaerobic growth then resumes for each species after the
appropriate delay period has passed.

When switching is not costly, the fastest responding
species always out-competes the others in a chemostat
with fluctuating oxygen concentration, while in a constant
environment all strategies are equally fit and population
dynamics are entirely stochastic (see Supporting informa-
tion for the chemostat results). Diversity of denitrifiers is
therefore minimal in the fluctuating chemostat, as coex-
istence is not possible. In a biofilm a faster responding
species will grow better under fluctuating conditions; at
the highest frequencies of change (pulses every 2 or 4 h),
the growth advantage of the shortest lag species is most
evident. The time series plots in Fig. 6 and the final biofilm
states shown in Fig. 7 illustrate these conclusions, as do
Movies S9–S16. Hence, diversity in the biofilm is highest
under constant aerobic or anaerobic conditions and
lowest when fluctuations are most frequent. However, the
weaker competitors remain in the biofilm, in contrast to
the chemostat, where competitive exclusion takes place.

Table 1. Stoichiometric matrix for reactions in the switch case study.

Process

Biomass Solutes

Kinetic expressionHeterotrophs EPS Inert COD NO3
− O2

Aerobic growth 1−YH
EPS YH

EPS − 1
YH

− −1 Y
Y

H

H

μH
COD

COD
H

COD
H H

S
K S

S
K S

Xmax

+ +
O

O O

2

2 2

Aerobic maintenance -1 -1 b
S

K S
XH

m
H H

O

O O

2

2 2+

Anaerobic growth 1−YH
EPS YH

EPS − 1
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− −1
4 57

1
.

Y
Y

H

H

μH
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COD
H

COD
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S
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S
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+ +
NO

NO NO

3

3 3

Anaerobic maintenance -1 − 1
4 57.

b
S

K S
XH

m
H H

NO

NO NO

3

3 3+

Inactivation -1 1 b XH
i

H

Table 2. Heterotroph parameter values for the switch case study.

Parameter Symbol Value Units Source

Maximal growth rate μH
max 0.25 h-1 BM3

Biomass yield YH 0.63 g COD-X/g COD-S BM3
EPS yield YH

EPS 0.2 g COD • g COD-1 Assumed
Saturation constant for COD KCOD

H 4 • 10-3 g COD • L-1 BM3
Saturation constant for O2 K H

O2 0.2 • 10-3 g O2 • L-1 BM3
Saturation constant for NO3

− K H
NO3 0.5 • 10-3 g N • L-1 ASM

Maintenance rate for Lag-5 species bm
H1 0.0133 h-1 BM3

Maintenance rate for Lag-3 species bm
H2 0.0176 h-1 Assumed

Maintenance rate for Lag-1 species bm
H3 0.0399 h-1 Assumed

Inactivation rate bH
i 0.0033 h-1 BM3

Switch threshold ST
O2 0.2 • 10-3 g O2 • L-1 YM

Biomass and inert density rX 150 g COD • L-1 Assumed
EPS density rEPS 30 g COD • L-1 Assumed

Sources for the values were: BM3 (Noguera and Picioreanu, 2004; Rittmann et al., 2004), ASM (Henze, 2000) and YM (Ye et al., 1995; Matsumoto
et al., 2007b).
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In the more realistic case where switching is costly,
there is an optimal strategy for each pulse frequency
because of the trade-off between cost and response time:
the slower the environment changes, the longer the
optimal response time will be. In the chemostat this
optimal strategy completely replaces the others: coexist-
ence is not possible and diversity is minimal (see Sup-
porting information for the chemostat results). In the
biofilm, the optimal strategy does not completely replace
other strategies (see Figs 6 and 7 for plots indicating this
result), thus allowing for higher diversity. Note that the
range of fluctuation frequencies for which the intermediate
strategy is fittest is broader than for the other strategies,
suggesting that this ‘generalist’ strategy is advantageous
if the frequency of fluctuations themselves change. Inter-
mediate pulse frequencies also allow higher diversity than
in the constant environment, in contrast to the no-cost
case (also seen in Figs 6 and 7).

With iDynoMiCS we are easily able to simulate growth
of this system in 3 dimensions too, and when doing so we
find similar results to those obtained with 2D simulations.
For example, consider an inoculation of the three species
that, like the 2D initial condition, creates a defined region

for each species, as illustrated in Fig. 8 and Movie S17.
When this initial condition is subjected to anoxic growth
conditions with oxygen pulses occurring every 4 h, the
simulation outputs match the 2D results: there is roughly
equal growth of all species in the early part of the simu-
lation, but by 80 h the faster-switching species thrives at
the expense of the slower-switching species, in spite of
the higher cost to switch quickly. By 120 h it is clear that
the faster-switching species will dominate the biofilm.

It was our goal to evaluate whether it is indeed an
ecological advantage to be able to quickly induce denitri-
fication under low oxygen concentrations as has been
postulated (Robertson and Kuenen, 1984), and we find
that when there is no cost to fast induction the advantage
of this strategy is clear. However, when there is a cost to
faster induction a trade-off results, which renders the
optimal growth strategy dependent on the environment
and competing species, similar to the trade-off between
rate- and yield-based growth strategies (Kreft, 2004). Tra-
ditional inhibition-based reaction kinetics are not ideal for
use in this type of study because those equations show
instant responses and would thus require some
workaround in order to capture the on/off switching with
lags. With iDynoMiCS, though, we could incorporate the
induction lags into the model directly, allowing individual
agents to activate or deactivate reaction pathways in
response to local conditions.

Conclusion

iDynoMiCS is a new computational tool intended to lower
the barrier to biofilm modelling by non-programmers, but

Table 3. Environmental parameter values for the switch case study.

Parameter Symbol Value Units

Influent COD CODin 10 • 10-3 g COD • L-1

Influent NO3
− NO3in 4 • 10-3 g N • L-1

Dilution rate D 0.67 h-1

Specific area sR 80 m2 • m-3

Erosion strength kDet 16 • 10-6 (mm • h)-1

Fig. 5. Bulk reactor concentrations when oxygen is pulsed every 2 (left) and 8 (right) hours. Shown is an example 24 h period of bulk
concentrations during oxygen pulses. The oxygen concentration quickly drops to zero after rising to 0.5 mg O2/L during a pulse, and the pulse
affects both COD and nitrate concentrations in the bulk because of activation of the aerobic growth pathway. After oxygen is depleted, the
COD and nitrate concentrations begin to rise until the anaerobic pathway is re-induced by the Lag-1 species, at which point the concentrations
begin to drop once again. When pulses occur every 2 h this is the only species that is able to induce its anaerobic pathway, but when pulses
occur every 8 h there are additional drops in the COD and nitrate concentrations as the Lag-3 and Lag-5 species also induce their anaerobic
pathways.
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iDynoMiCS also introduces several advances to biofilm
modelling techniques and addresses limitations in previ-
ous models. Foremost among these advances are the
inclusion of a pressure field to model biomass spreading

or consolidation, improvements to the treatment of EPS
(non-growth-dependent excretion and use of smaller par-
ticles), the ability to easily model an unstructured chemo-
stat environment and, perhaps most importantly, the
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ability for individuals of a species to behave in a truly
individual manner as metabolic reactions are no longer
hard-wired into the repertoire of the individual. The new
features in iDynoMiCS have already proven fruitful in the
case study of metabolic switching triggered by external
oxygen concentrations. For the case of a trade-off
between rate of response to environmental change and

cost of metabolic reorganization, there is an optimal lag
time that relates to the frequency of environmental
change. This explains how the existence of different regu-
latory strategies in denitrifying bacteria can be main-
tained. We found that chemostats show competitive
exclusion but biofilms maintain a diverse community, and
that this diversity is highest under fluctuating conditions.

Fig. 6. Species diversity and survival after 10 days of growth as dependent on environmental conditions and on metabolic costs. The Diversity
Index was calculated via:
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where nk is the number of individuals of species k and NT is the total number of individuals. An index of 1 represents complete diversity (each
individual is a unique species), while an index of 0 represents complete homogeneity (only one species present). For the calculation of this index
we included only bacterial agents and excluded EPS agents. Similarly, the fraction of a given species at each point in time is calculated as nk/NT.
When there is no cost for fast induction of the anaerobic pathway, species diversity decreases with an increasingly fluctuating environment. But
when there is a metabolic cost to fast induction, intermediate-rate fluctuations lead to the highest diversity. See Fig. 7 for the biofilm structures
obtained after 10 days.

Fig. 7. Comparison of biofilm composition after 10 days for different growth conditions. The colours used to represent the on/off states for the
species types are: black/white for Lag-1, red/green for Lag-3 and yellow/blue for Lag-5. The smaller pink agents are EPS particles. All cases
were inoculated with the substratum divided into three equal parts, each covered by a different species. Species ranks are by total number
of agents of each species. When there is no cost for fast induction of the anaerobic pathway, a fluctuating environment selects for the
fastest-responding (lowest-lag) species. When the cost of induction increases with increasing rate of response, the slowest-responding species
dominates at constant conditions and the fastest-responding species dominates at higher fluctuating frequency, while the intermediate species
dominates at intermediate conditions.
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We suggest that this higher diversity may buffer the micro-
bial community in a biofilm against periodic but also
unpredictable changes. The iDynoMiCS platform has also
been used in a study of plasmid spread in biofilms
(Merkey et al., 2011), and work is already underway to
extend the iDynoMiCS framework to include additional
microbial organisms (such as planktonic species) and
new growth geometries. The modular nature of iDynoM-
iCS makes such extensions easy and natural, which was
one of the original goals in developing iDynoMiCS.
Included in the Supporting information are details describ-
ing how to obtain iDynoMiCS.
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version of this article:

Fig. S1. Agent behaviour at boundaries.
Fig. S2. Pressure field contours.
Fig. S3. Cell division.
Fig. S4. Shoving of neighbouring cells is triggered if there is
an overlap between them.
Fig. S5. Example of isolines of erosion time computed with
the fast marching algorithm.
Fig. S6. Comparison of simulations of the stochastic
chemostat model using iDynoMiCS with simulations of the
deterministic ODE model using the ODE solver ode23s of
Matlab.
Fig. S7. Metabolic switch algorithm.
Table S1. Simple example reaction description and stoichio-
metric matrix.
Table S2. Reactions matrix for BM3 problem (Rittmann
et al., 2004).
Table S3. Parameter values for BM3 problem (Rittmann
et al., 2004).
Table S4. Environmental conditions for BM3 problem (Ritt-
mann et al., 2004).
Table S5. Results of BM3 simulations.
Table S6. Chemostat results for the metabolic switch case
study.
Algorithm S1. When a chemostat is being simulated, step 1
is simplified due to the spatial homogeneity but the time
resolution is increased, steps 2, 3c, and 3d are skipped, and
step 4 is replaced by stochastic agent dilution.
Movies S1–S8. These movies illustrate biofilm growth
without cost for fast switching.
Movie S1. Growth under aerobic conditions.
Movie S2. Growth under anaerobic conditions.
Movie S3. Growth under anaerobic conditions interrupted by
an oxygen pulse every 32 hours.
Movie S4. Growth under anaerobic conditions interrupted by
an oxygen pulse every 16 hours.
Movie S5. Growth under anaerobic conditions interrupted
by an oxygen pulse every 8 hours.
Movie S6. Growth under anaerobic conditions interrupted by
an oxygen pulse every 4 hours.
Movie S7. Growth under anaerobic conditions interrupted by
an oxygen pulse every 2 hours.
Movie S8. Growth under anaerobic conditions interrupted
by randomly-occurring oxygen pulses.
Movies S9–S16. These movies illustrate biofilm growth
when there is a cost for fast switching.
Movie S9. Growth under aerobic conditions.
Movie S10. Growth under anaerobic conditions.
Movie S11. Growth under anaerobic conditions interrupted
by an oxygen pulse every 32 hours.
Movie S12. Growth under anaerobic conditions interrupted
by an oxygen pulse every 16 hours.
Movie S13. Growth under anaerobic conditions inter-
rupted by an oxygen pulse every 8 hours.
Movie S14. Growth under anaerobic conditions interrupted
by an oxygen pulse every 4 hours.
Movie S15. Growth under anaerobic conditions interrupted
by an oxygen pulse every 2 hours.
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Movie S16. Growth under anaerobic conditions interrupted
by randomly-occurring oxygen pulses.
Movie S17. This movie illustrates a 3D simulation of biofilm
growth under anaerobic conditions interrupted by an oxygen
pulse every 4 hours when there is a cost for fast switching.
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article.
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